Project/Area Number |
16H03869
|
Research Category |
Grant-in-Aid for Scientific Research (B)
|
Allocation Type | Single-year Grants |
Section | 一般 |
Research Field |
Thin film/Surface and interfacial physical properties
|
Research Institution | Nagaoka University of Technology |
Principal Investigator |
Yasui Kanji 長岡技術科学大学, 工学研究科, 教授 (70126481)
|
Co-Investigator(Kenkyū-buntansha) |
加藤 有行 長岡技術科学大学, 工学研究科, 准教授 (10303190)
田中 久仁彦 長岡技術科学大学, 工学研究科, 准教授 (30334692)
|
Project Period (FY) |
2016-04-01 – 2020-03-31
|
Project Status |
Completed (Fiscal Year 2019)
|
Budget Amount *help |
¥16,510,000 (Direct Cost: ¥12,700,000、Indirect Cost: ¥3,810,000)
Fiscal Year 2019: ¥3,120,000 (Direct Cost: ¥2,400,000、Indirect Cost: ¥720,000)
Fiscal Year 2018: ¥5,200,000 (Direct Cost: ¥4,000,000、Indirect Cost: ¥1,200,000)
Fiscal Year 2017: ¥4,030,000 (Direct Cost: ¥3,100,000、Indirect Cost: ¥930,000)
Fiscal Year 2016: ¥4,160,000 (Direct Cost: ¥3,200,000、Indirect Cost: ¥960,000)
|
Keywords | 触媒反応 / ハイパーソニックビーム / エピタキシャル成長 / 金属酸化物 / 化学気相堆積法 / 酸化亜鉛 / 金属酸化物薄膜 / 化学気相成長法 / 単分子層成長制御 |
Outline of Final Research Achievements |
ZnO films were grown by a reaction between dimethylzinc and a hypersonic water beam produced by a Pt-catalyzed reaction between hydrogen and oxygen gases. For a pulse duration of 1 ms, the deposition rate was 0.18 to 0.19 nm per pulse. The thickness of the deposited film could therefore be controlled to less than the thickness of a single molecular layer using this new process. Next, non-polar ZnO films were grown on r-plane sapphire substrates. The ZnO films exhibited linearly polarized emission. Although Mg incorporation was tried, MgZnO film could not be grown by the reaction between the hypersonic H2O beam and metal source gases but were grown by the reaction between oxygen and the metal source gases. Finally, nitrogen doping to the ZnO films investigated to grow p-type films. By the addition of atomic nitrogen generated on a heated Ir wire, nitrogen content on the order of 10E19 cm-3 in the films was obtained by SIMS measurement.
|
Academic Significance and Societal Importance of the Research Achievements |
本研究課題により触媒反応により生成した高温の水分子をラバールノズルから噴出しハイパーソニックビームを形成し有機金属ガスと反応させ外部エネルギーを使用せずに金属酸化物プリカーサーを生成する、それを基板に供給することで外部エネルギー無しで金属酸化物薄膜の堆積技術が実現した。この技術を用いることにより低温で高品位の金属酸化物結晶膜の作製が可能になり、省エネルギー性に優れたCVD法が実現した。更にミリ秒幅のパルスガス供給技術と複合させることにより分子層厚レベルでの半導体薄膜の成長技術が構築された。
|