• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Relation between representations at the critical level and those of level zero for affine Lie algebras and semi-infinite flag manifolds

Research Project

Project/Area Number 16H03920
Research Category

Grant-in-Aid for Scientific Research (B)

Allocation TypeSingle-year Grants
Section一般
Research Field Algebra
Research InstitutionTokyo Institute of Technology

Principal Investigator

Naito Satoshi  東京工業大学, 理学院, 教授 (60252160)

Co-Investigator(Kenkyū-buntansha) 池田 岳  早稲田大学, 理工学術院, 教授 (40309539)
荒川 知幸  京都大学, 数理解析研究所, 教授 (40377974)
Project Period (FY) 2016-04-01 – 2021-03-31
Project Status Completed (Fiscal Year 2021)
Budget Amount *help
¥13,650,000 (Direct Cost: ¥10,500,000、Indirect Cost: ¥3,150,000)
Fiscal Year 2020: ¥2,470,000 (Direct Cost: ¥1,900,000、Indirect Cost: ¥570,000)
Fiscal Year 2019: ¥2,990,000 (Direct Cost: ¥2,300,000、Indirect Cost: ¥690,000)
Fiscal Year 2018: ¥2,470,000 (Direct Cost: ¥1,900,000、Indirect Cost: ¥570,000)
Fiscal Year 2017: ¥2,470,000 (Direct Cost: ¥1,900,000、Indirect Cost: ¥570,000)
Fiscal Year 2016: ¥3,250,000 (Direct Cost: ¥2,500,000、Indirect Cost: ¥750,000)
Keywords表現論 / アフィン量子群の表現論 / アフィン・リー環の表現論 / レベル・ゼロ表現 / 半無限旗多様体 / 旗多様体の量子 K-群 / 代数学 / 量子 K-群 / 同変 K-群 / 同変量子 K-群 / シューベルト多様体 / Chevalley 公式 / トーラス同変 K-群 / アフィン量子群のレベル・ゼロ表現 / アフィン・リー環の臨界レベル表現 / 非対称Macdonald 多項式 / Lakshmibai-Seshadri パス / 臨界レベルの表現 / 半無限シューベルト多様体 / 量子群の表現論
Outline of Final Research Achievements

Semi-infinite flag manifolds are infinite-dimensional algebraic varieties associated to complex simple algebraic groups; the torus-equivariant K-group of a semi-infinite flag manifold is isomorphic to the torus-equivariant quantum K-theory of a finite-dimensional flag manifold.
We revealed a close relation between the torus-equivariant K-group of semi-infinite flag manifolds and the theory of level-zero modules over quantum affine algebras. Moreover, on the basis of this relation, we proved a Chevalley formula for the torus-equivariant K-group of semi-infinite flag manifolds, which describes the tensor product with the line bundle class associated to an arbitrary integral weight; this was achieved by establishing an explicit identity for the graded characters of level-zero Demazure modules over quantum affine algebras. Note that our Chevalley formula is described in terms of the quantum alcove model, which is a uniform combinatorial model in combinatorial representation theory.

Academic Significance and Societal Importance of the Research Achievements

複素単純代数群に付随する半無限旗多様体のトーラス同変 K-群は、有限次元旗多様体のトーラス同変量子 K-群と同型である事が知られている。さらに、有限次元旗多様体のトーラス同変量子 K-群の量子積構造は、反優整基本ウエイトに付随する直線束との量子積と、トーラスの表現環上のこの K-群の加群構造によって一意的に決定される。
我々の得た半無限旗多様体のトーラス同変 K-群における Chevalley 公式は任意の整ウエイトに付随する直線束に関するものであり、特別な場合としてこの反優整基本ウエイトの場合を含んでいて、有限次元旗多様体のトーラス同変量子 K-群の研究においても重要な意義を持つ。

Report

(6 results)
  • 2021 Final Research Report ( PDF )
  • 2020 Annual Research Report
  • 2019 Annual Research Report
  • 2018 Annual Research Report
  • 2017 Annual Research Report
  • 2016 Annual Research Report
  • Research Products

    (32 results)

All 2020 2019 2018 2017 2016 Other

All Int'l Joint Research (5 results) Journal Article (12 results) (of which Int'l Joint Research: 3 results,  Peer Reviewed: 12 results,  Acknowledgement Compliant: 2 results) Presentation (12 results) (of which Int'l Joint Research: 9 results,  Invited: 12 results) Funded Workshop (3 results)

  • [Int'l Joint Research] New York 州立大学 Albany 校(米国)

    • Related Report
      2020 Annual Research Report
  • [Int'l Joint Research] State University of New York at Albany/Virginia Tech(米国)

    • Related Report
      2019 Annual Research Report
  • [Int'l Joint Research] Virginia Polytechnic Institute(米国)

    • Related Report
      2018 Annual Research Report
  • [Int'l Joint Research] State University of New York at Albany/University of California, Davis/Virginia Polytechnic Institute(米国)

    • Related Report
      2017 Annual Research Report
  • [Int'l Joint Research] State University of New York at Albany/University of California, Davis/Virginia Tech(U.S.A.)

    • Related Report
      2016 Annual Research Report
  • [Journal Article] Equivariant K-theory of semi-infinite flag manifolds and the Pieri-Chevalley formula2020

    • Author(s)
      Kato Syu, Naito Satoshi, Sagaki Daisuke
    • Journal Title

      Duke Mathematical Journal

      Volume: 169 Issue: 13

    • DOI

      10.1215/00127094-2020-0015

    • Related Report
      2020 Annual Research Report 2019 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Tensor product decomposition theorem for quantum Lakshmibai-Seshadri paths and standard monomial theory for semi-infinite Lakshmibai-Seshadri paths2020

    • Author(s)
      S. Naito, F. Nomoto, and D. Sagaki
    • Journal Title

      Journal of Combinatorial Theory. Series A

      Volume: 169 Pages: 105122-105122

    • DOI

      10.1016/j.jcta.2019.105122

    • Related Report
      2020 Annual Research Report 2019 Annual Research Report
    • Peer Reviewed
  • [Journal Article] LEVEL-ZERO VAN DER KALLEN MODULES AND SPECIALIZATION OF NONSYMMETRIC MACDONALD POLYNOMIALS AT t = ∞2020

    • Author(s)
      NAITO SATOSHI、SAGAKI DAISUKE
    • Journal Title

      Transformation Groups

      Volume: - Issue: 3 Pages: 1077-1111

    • DOI

      10.1007/s00031-020-09586-0

    • Related Report
      2019 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Representation-theoretic interpretation of Cherednik-Orr's recursion formula for the specialization of nonsymmetric Macdonald polynomials at t = infinity2018

    • Author(s)
      S. Naito, F. Nomoto, and D. Sagaki
    • Journal Title

      Transform. Groups

      Volume: in press Issue: 1 Pages: 155-191

    • DOI

      10.1007/s00031-017-9467-0

    • Related Report
      2018 Annual Research Report 2017 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Specialization of nonsymmetric Macdonald polynomials at t = \infty and Demazure submodules of level-zero extremal weight modules2017

    • Author(s)
      S. Naito, F. Nomoto, and D. Sagaki
    • Journal Title

      Trans. Amer. Math. Soc.

      Volume: in press Issue: 4 Pages: 2739-2783

    • DOI

      10.1090/tran/7114

    • Related Report
      2018 Annual Research Report 2017 Annual Research Report 2016 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Newton-Okounkov convex bodies of Schubert varieties and polyhedral realizations of crystal bases2017

    • Author(s)
      Naoki Fujita, Satoshi Naito
    • Journal Title

      Mathematische Zeitschrift

      Volume: 285 Issue: 1-2 Pages: 325-352

    • DOI

      10.1007/s00209-016-1709-7

    • Related Report
      2017 Annual Research Report 2016 Annual Research Report
    • Peer Reviewed / Acknowledgement Compliant
  • [Journal Article] A combinatorial formula expressing periodic R-polynomials2017

    • Author(s)
      S. Naito and H. Watanabe
    • Journal Title

      J. Combin. Theory Ser. A

      Volume: 148 Pages: 197-243

    • DOI

      10.1016/j.jcta.2016.12.008

    • Related Report
      2017 Annual Research Report 2016 Annual Research Report
    • Peer Reviewed
  • [Journal Article] A uniform model for Kirillov-Reshetikhin crystals II. Alcove model, path model, and $P=X$2017

    • Author(s)
      C.Lenart, S.Naito, D.Sagaki, A. Schilling, and M. Shimozono
    • Journal Title

      Int. Math. Res. Not. IMRN

      Volume: 2017 Pages: 4259-4319

    • DOI

      10.1093/imrn/rnw129

    • Related Report
      2017 Annual Research Report 2016 Annual Research Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] A uniform model for Kirillov-Reshetikhin crystals III. Nonsymmetric Macdonald polynomials at t = 0 and Demazure characters2017

    • Author(s)
      C.Lenart, S.Naito, D.Sagaki, A.Schilling, and M.Shimozono
    • Journal Title

      Transformation Groups

      Volume: 印刷中 Issue: 4 Pages: 1041-1079

    • DOI

      10.1007/s00031-017-9421-1

    • Related Report
      2017 Annual Research Report 2016 Annual Research Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] Semi-infinite Lakshmibai-Seshadri path model for level-zero extremal weight modules over quantum affine algebras2016

    • Author(s)
      Motohiro Ishii, Satoshi Naito and Daisuke Sagaki
    • Journal Title

      Advances in Mathematics

      Volume: 290 Pages: 967-1009

    • DOI

      10.1016/j.aim.2015.11.037

    • Related Report
      2016 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Demazure submodules of level-zero extremal weight modules2016

    • Author(s)
      Satoshi Naito and Daisuke Sagaki
    • Journal Title

      Mathematische Zeitschrift

      Volume: 印刷中 Issue: 3-4 Pages: 937-978

    • DOI

      10.1007/s00209-016-1628-7

    • Related Report
      2016 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Quantum Lakshmibai-Seshadri paths and root operators2016

    • Author(s)
      C. Lenart, S. Naito, D. Sagaki, A. Schilling, and M. Shimozono
    • Journal Title

      Adv. Stud. Pure Math.

      Volume: 71 Pages: 267-294

    • Related Report
      2016 Annual Research Report
    • Peer Reviewed / Int'l Joint Research / Acknowledgement Compliant
  • [Presentation] Description of the Chevalley formula for the torus-equivariant quantum K-group of partial flag manifolds of (co-)minuscule type in terms of the parabolic quantum Bruhat graph2019

    • Author(s)
      Satoshi Naito
    • Organizer
      RIMS Workshop on Representation Theory of Algebraic Groups and Quantum Groups
    • Related Report
      2019 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] A description of the Z[P]-module structure of the K-theory of finite-dimensional flag manifolds in terms of a generalization of LS paths2019

    • Author(s)
      Satoshi Naito
    • Organizer
      Workshop on Crystals and Their Generalizations
    • Related Report
      2018 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] Pieri-Chevalley formula in the equivariant K-theory of semi-infinite flag manifolds2018

    • Author(s)
      Satoshi Naito
    • Organizer
      Geometry and Representation Theory at the Interface of Lie Algebras and Quivers
    • Related Report
      2018 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] Chevalley formula in the equivariant K-theory of semi-infinite flag manifolds2018

    • Author(s)
      Satoshi Naito
    • Organizer
      京都大学数理解析研究所共同研究 「組合せ論的表現論の諸相」
    • Related Report
      2018 Annual Research Report
    • Invited
  • [Presentation] Chevalley formula in the equivariant K-theory of semi-infinite flag manifolds2018

    • Author(s)
      Satoshi Naito
    • Organizer
      Workshop on Quantum K-theory and Related Topics
    • Related Report
      2018 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] Level-zero van der Kallen modules and specialization of nonsymmetric Macdonald polynomials at t = infinity2018

    • Author(s)
      Satoshi Naito
    • Organizer
      Finite Groups, VOAs, and Related Topics 2018
    • Related Report
      2017 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] 量子アフィン代数の表現論2018

    • Author(s)
      内藤 聡
    • Organizer
      2018 年度 (第 21 回) 日本数学会代数学賞受賞特別講演
    • Related Report
      2017 Annual Research Report
    • Invited
  • [Presentation] Standard monomial theory for semi-infinite LS paths and semi-infinite flag manifolds2017

    • Author(s)
      Satoshi Naito
    • Organizer
      Taipei Workshop on Representation Theory of Lie Superalgebras and Related Topics
    • Related Report
      2017 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] Level-zero van der Kallen modules and specialization of nonsymmetric Macdonald polynomials at infinity2017

    • Author(s)
      Satoshi Naito
    • Organizer
      Conference on Algebraic Representation Theory
    • Related Report
      2017 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] アフィン量子群上の extremal ウエイト加群の Demazure 部分加群の指標公式と、非対称 Macdonald 多項式の特殊化2016

    • Author(s)
      Satoshi Naito
    • Organizer
      日本数学会秋季総合分科会代数学分科会特別講演
    • Place of Presentation
      関西大学, 大阪府吹田市
    • Related Report
      2016 Annual Research Report
    • Invited
  • [Presentation] Standard monomial theory for semi-infinite LS paths with geometric application2016

    • Author(s)
      Satoshi Naito
    • Organizer
      Geometric Representation Theory 2016
    • Place of Presentation
      Kyoto University, Kyoto, Japan
    • Related Report
      2016 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] Pieri-Chevalley type formula for equivariant K-theory of semi-infinite flag manifolds2016

    • Author(s)
      Satoshi Naito
    • Organizer
      Conference on Algebraic Representation Theory
    • Place of Presentation
      Harbin Institute of Technology, Shenzhen, China
    • Related Report
      2016 Annual Research Report
    • Int'l Joint Research / Invited
  • [Funded Workshop] Algebraic Lie Theory and Representation Theory 20182018

    • Related Report
      2018 Annual Research Report
  • [Funded Workshop] Spring School on Representation Theory 20172017

    • Place of Presentation
      University of Tokyo, Tokyo, Japan
    • Year and Date
      2017-03-13
    • Related Report
      2016 Annual Research Report
  • [Funded Workshop] Algebraic Lie Theory and Representation Theory 20172017

    • Related Report
      2017 Annual Research Report

URL: 

Published: 2016-04-21   Modified: 2023-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi