• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Analytic torsion and discriminant

Research Project

Project/Area Number 16H03935
Research Category

Grant-in-Aid for Scientific Research (B)

Allocation TypeSingle-year Grants
Section一般
Research Field Geometry
Research InstitutionKyoto University

Principal Investigator

Yoshikawa Ken-Ichi  京都大学, 理学研究科, 教授 (20242810)

Project Period (FY) 2016-04-01 – 2021-03-31
Project Status Completed (Fiscal Year 2021)
Budget Amount *help
¥9,100,000 (Direct Cost: ¥7,000,000、Indirect Cost: ¥2,100,000)
Fiscal Year 2020: ¥1,950,000 (Direct Cost: ¥1,500,000、Indirect Cost: ¥450,000)
Fiscal Year 2019: ¥1,950,000 (Direct Cost: ¥1,500,000、Indirect Cost: ¥450,000)
Fiscal Year 2018: ¥1,950,000 (Direct Cost: ¥1,500,000、Indirect Cost: ¥450,000)
Fiscal Year 2017: ¥1,560,000 (Direct Cost: ¥1,200,000、Indirect Cost: ¥360,000)
Fiscal Year 2016: ¥1,690,000 (Direct Cost: ¥1,300,000、Indirect Cost: ¥390,000)
Keywords解析的捩率 / BCOV不変量 / 判別式 / 保型形式 / Borcherds積 / Calabi-Yau多様体 / Enriques多様体 / 対数的Enriques曲面 / テータ定数 / モジュライ空間 / エンリケス多様体 / 対数的エンリケス曲面 / ボルチャーズ積 / クンマー曲面 / エンリケス曲面 / j-不変量
Outline of Final Research Achievements

We constructed a holomorphic torsion invariant for log-Enriques surfaces and proved that this invariant is expressed as the Petersson norm of an explicit Borcherds product on the Kaehler moduli space of the corresponding Del Pezzo surface. We constructed a holomorphic torsion invariant for Enriques manifolds of higher dimension and proved that this invariant is a potential function of the Weil-Petersson metric on their moduli space. For some non-Borcea-Voisin Calabi-Yau orbifolds of dimension three, we computed the BCOV invariant. We proved that the quasi-pullback of the product of the even theta constants via the Torelli map for 2-elementary K3 surfaces is given by the product of even theta constants of smaller genus and a Borcherds product. We gave a factorization formula for the difference of j-invariants in terms of the pullback of the Borcherds Phi-function to the product of complex upper half plane.

Academic Significance and Societal Importance of the Research Achievements

対合付K3曲面と3次元Calabi-Yau多様体に限られていた解析的捩率不変量の構成法をあるクラスの特異Calabi-Yau空間や高次元Enriques多様体に拡張する事で、より広範なクラスの多様体に対して解析的捩率不変量が存在し、モジュライ空間上に興味深い関数が存在する事が示された。これまでIV型領域上の保型形式に限られていた無限積展開を持つ保型形式の理論をIV型領域上の別の直線束の切断に拡張できる可能性が示唆された。

Report

(6 results)
  • 2021 Final Research Report ( PDF )
  • 2020 Annual Research Report
  • 2019 Annual Research Report
  • 2018 Annual Research Report
  • 2017 Annual Research Report
  • 2016 Annual Research Report
  • Research Products

    (21 results)

All 2021 2020 2019 2018 2017 2016 Other

All Int'l Joint Research (4 results) Journal Article (7 results) (of which Peer Reviewed: 7 results) Presentation (10 results) (of which Int'l Joint Research: 10 results,  Invited: 10 results)

  • [Int'l Joint Research] カリフォルニア大学サンタバーバラ校(米国)

    • Related Report
      2019 Annual Research Report
  • [Int'l Joint Research] Rennes University/CNRS(フランス)

    • Related Report
      2017 Annual Research Report
  • [Int'l Joint Research] Chalmers University of technology(スウェーデン)

    • Related Report
      2017 Annual Research Report
  • [Int'l Joint Research] カリフォルニア大学/サンタバーバラ校(米国)

    • Related Report
      2016 Annual Research Report
  • [Journal Article] K3 surfaces with involution, equivariant analytic torsion, and automorphic forms on the moduli space IV: the structure of invariant2020

    • Author(s)
      Souhei Ma, Ken-Ichi Yoshikawa
    • Journal Title

      Compositio Mathematica

      Volume: 156 Issue: 10 Pages: 1965-2019

    • DOI

      10.1112/s0010437x2000737x

    • NAID

      120007193026

    • Related Report
      2019 Annual Research Report
    • Peer Reviewed
  • [Journal Article] K3 surfaces with involution and analytic torsion2020

    • Author(s)
      Ken-Ichi Yoshikawa
    • Journal Title

      Sugaku Expositions

      Volume: 33 Issue: 1 Pages: 85-109

    • DOI

      10.1090/suga/449

    • NAID

      130007420317

    • Related Report
      2019 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Resultants and the Borcherds Φ-function2018

    • Author(s)
      Shu Kawaguchi, Shigeru Mukai, Ken-Ichi Yoshikawa
    • Journal Title

      American Journal of Mathematics

      Volume: 140 Issue: 6 Pages: 1471-1519

    • DOI

      10.1353/ajm.2018.0045

    • Related Report
      2018 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Resultants and the Borcherds Φ-function2018

    • Author(s)
      Shu Kawaguchi, Shigeru Mukai, Ken-Ichi Yoshikawa
    • Journal Title

      American Journal of Mathematics

      Volume: 印刷中

    • Related Report
      2017 Annual Research Report 2016 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Analytic torsion for Borcea-Voisin threefolds2017

    • Author(s)
      K.-I. Yoshikawa
    • Journal Title

      Progress in Mathematics

      Volume: 310 Pages: 279-361

    • DOI

      10.1007/978-3-319-49638-2_13

    • ISBN
      9783319496368, 9783319496382
    • Related Report
      2017 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Analytic torsion for Borcea-Voisin threefolds2017

    • Author(s)
      Ken-Ichi Yoshikawa
    • Journal Title

      Progress in Mathathematics

      Volume: 310 Pages: 279-361

    • Related Report
      2016 Annual Research Report
    • Peer Reviewed
  • [Journal Article] 対合付きK3曲面と解析的捩率2016

    • Author(s)
      吉川 謙一
    • Journal Title

      数学

      Volume: 68 Pages: 225-245

    • NAID

      130007420317

    • Related Report
      2016 Annual Research Report
    • Peer Reviewed
  • [Presentation] Degeneration of Riemann surfaces and small eigenvalues of Laplacian2021

    • Author(s)
      Ken-Ichi Yoshikawa
    • Organizer
      Index Theory and Complex Geometry: Conference on Index Theory and Related Topics
    • Related Report
      2020 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] Quasi-pullback of certain Siegel modular forms and Borcherds products2021

    • Author(s)
      吉川謙一
    • Organizer
      「保型形式,保型表現, ガロア表現とその周辺」RIMS共同研究(公開型)
    • Related Report
      2019 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] Degeneration of Riemann surfaces and small eigenvalues of Laplacian2021

    • Author(s)
      吉川謙一
    • Organizer
      Grauert theory and recent complex geometry (Grauert理論と最近の複素幾何)
    • Related Report
      2019 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] Degeneration of Riemann surfaces and small eigenvalues of Laplacian2021

    • Author(s)
      吉川謙一
    • Organizer
      India-Japan Web-Workshop on Vector Bundles and Related Topics
    • Related Report
      2019 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] Enriques 2n-folds and analytic torsion2019

    • Author(s)
      Ken-Ichi Yoshikawa
    • Organizer
      Discussion Meeting on Bundle 2019
    • Related Report
      2018 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] Enriques 2n-folds and analytic torsion2018

    • Author(s)
      Ken-Ichi Yoshikawa
    • Organizer
      Intercity Seminar in Arakelov Geometry 2018
    • Related Report
      2018 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] Enriques manifolds and analytic torsion2018

    • Author(s)
      Ken-Ichi Yoshikawa
    • Organizer
      第13回代数・解析・幾何学セミナー
    • Related Report
      2017 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] Enriques manifolds and analytic torsion2017

    • Author(s)
      Ken-Ichi Yoshikawa
    • Organizer
      第23回複素幾何シンポジウム
    • Related Report
      2017 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] Enriques manifolds and analytic torsion2017

    • Author(s)
      Ken-Ichi Yoshikawa
    • Organizer
      K3 Surfaces and Related Topics
    • Related Report
      2017 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] Holomorphic torsion invariants for K3 surfaces with involution and Borcherds products2016

    • Author(s)
      Ken-Ichi Yoshikawa
    • Organizer
      Moduli spaces and modular forms
    • Place of Presentation
      Mathematisches Forschungsinstitut Oberwolfach
    • Related Report
      2016 Annual Research Report
    • Int'l Joint Research / Invited

URL: 

Published: 2016-04-21   Modified: 2023-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi