• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

New models of inverse spectral and scattering theory - form discrete to condinuoud

Research Project

Project/Area Number 16H03944
Research Category

Grant-in-Aid for Scientific Research (B)

Allocation TypeSingle-year Grants
Section一般
Research Field Mathematical analysis
Research InstitutionRitsumeikan University

Principal Investigator

Isozaki Hiroshi  立命館大学, 理工学部, 授業担当講師 (90111913)

Co-Investigator(Kenkyū-buntansha) 岩塚 明  京都工芸繊維大学, 基盤科学系, 教授 (40184890)
Project Period (FY) 2016-04-01 – 2020-03-31
Project Status Completed (Fiscal Year 2019)
Budget Amount *help
¥5,330,000 (Direct Cost: ¥4,100,000、Indirect Cost: ¥1,230,000)
Fiscal Year 2019: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Fiscal Year 2018: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Fiscal Year 2017: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Fiscal Year 2016: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
Keywords逆問題 / S行列 / ディリクレーノイマン写像 / リーマン計量 / 格子 / シュレーディンガー作用素 / 境界制御法 / スペクトル理論 / 散乱理論 / s行列 / ディリクレノイマン写像 / リーマン多様体 / 量子グラフ / ディリレーノイマン写像 / アルゴリズム / ディリクレ―ノイマン写像 / ゲルファント―レビタン法 / ラプラシアン
Outline of Final Research Achievements

(1) In a most general class of non-compact Riemannian manifolds with ends equipped with prescribed metrics at infinity, I have solved the inverse scattering problem: From one component of the S-matrix associated with an arbitrary end, one can reconstruct the Riemannian metric and the topology of whole manifold. One can allow asymptotically hyperbolic and polynomially growing or decaying ends (hence one can allow cusps), and also the conic singularities appearing in the orbifolds. (2) On locally perturbed periodic lattices, I solved the inverse scattering problem. Given a S-matrix, one can reconstruct the perturbation of the lattice. It contains the physically imporant example of graphene.I have also solved the inverse scattering problem for quantum graph.(3) For the boundary value problem of the elastic wave equation in a half-space, I have derived the asymptptotic expansion of the reduced wave equation at infinity. It contains the Reyleigh waves propagating along the surface.

Academic Significance and Societal Importance of the Research Achievements

逆問題の目標は直接の観測が困難な対象を間接的情報から推測,同定,再構成することにあり,その応用は原子・分子等のミクロな物理の世界から,工学における非破壊検査,X線トモグラフィー等の医療, さらに資源探査等にまで広く及んでいる.この逆問題の理論的背景を解明することは,応用上の成果に理論的支柱を与えると共に,新しい応用も示唆する.リーマン多様体上の逆問題は数学の世界での大きな問題であるが,さらに格子上の逆問題を考えることによって,数学の中の純理論的考察と並行したことが固体物理の世界にも適用できることを示した.本研究は離散と連続に共通した逆問題研究の方法があることを示したことでも意義深い.

Report

(5 results)
  • 2019 Annual Research Report   Final Research Report ( PDF )
  • 2018 Annual Research Report
  • 2017 Annual Research Report
  • 2016 Annual Research Report
  • Research Products

    (36 results)

All 2020 2019 2018 2017 2016 Other

All Int'l Joint Research (13 results) Journal Article (9 results) (of which Int'l Joint Research: 4 results,  Peer Reviewed: 7 results,  Acknowledgement Compliant: 2 results) Presentation (13 results) (of which Int'l Joint Research: 8 results,  Invited: 11 results) Book (1 results)

  • [Int'l Joint Research] ヘルシンキ大学(フィンランド)

    • Related Report
      2019 Annual Research Report
  • [Int'l Joint Research] サンクトペテルスブルグ大学(ロシア連邦)

    • Related Report
      2019 Annual Research Report
  • [Int'l Joint Research] ドップラー研究所(チェコ)

    • Related Report
      2019 Annual Research Report
  • [Int'l Joint Research] アールボーグ大学(デンマーク)

    • Related Report
      2019 Annual Research Report
  • [Int'l Joint Research] University of Helsinki(フィンランド)

    • Related Report
      2018 Annual Research Report
  • [Int'l Joint Research] University of Aarhus(デンマーク)

    • Related Report
      2018 Annual Research Report
  • [Int'l Joint Research] University College London(英国)

    • Related Report
      2018 Annual Research Report
  • [Int'l Joint Research] University College London(United Kingdom)

    • Related Report
      2017 Annual Research Report
  • [Int'l Joint Research] University of Helsinki(Finland)

    • Related Report
      2017 Annual Research Report
  • [Int'l Joint Research] Saint Petersburg University(ロシア連邦)

    • Related Report
      2017 Annual Research Report
  • [Int'l Joint Research] University College of London(United Kingdom)

    • Related Report
      2016 Annual Research Report
  • [Int'l Joint Research] University of Helsinki(Finland)

    • Related Report
      2016 Annual Research Report
  • [Int'l Joint Research] St. Petersburg State Universtity(ロシア連邦)

    • Related Report
      2016 Annual Research Report
  • [Journal Article] Uniform asymptotic profiles of stationary wave propagation in perturbed two-layered media2020

    • Author(s)
      Hiroshi Isozaki, Mitsuteru Kadowaki and Michiyuki Watanabe
    • Journal Title

      Mathematical Methods in the Applied Sciences

      Volume: 43 Issue: 6 Pages: 2789-2835

    • DOI

      10.1002/mma.5945

    • Related Report
      2019 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Inverse spectral theory for perturbed torus2019

    • Author(s)
      H. Isozaki and E. Korotyaev
    • Journal Title

      Journal of geometric analysis

      Volume: 31 Issue: 4 Pages: 4427-4452

    • DOI

      10.1007/s12220-019-00248-6

    • Related Report
      2019 Annual Research Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] Corrections to :Inverse scattering for Schroedinger operators on perturbed lattices2019

    • Author(s)
      K.Ando, H. Isozaki and H. Morioka
    • Journal Title

      Annales Henri Poincare

      Volume: 20 Pages: 337-338

    • Related Report
      2019 Annual Research Report
  • [Journal Article] Inverse scattering for Schroedinger operators on perturbed lattices2018

    • Author(s)
      K. Ando, H. Isozaki and H. Morioka
    • Journal Title

      Annales Henri Poincare

      Volume: 19 Issue: 1 Pages: 3397-3455

    • DOI

      10.1007/s00023-018-0752-9

    • Related Report
      2018 Annual Research Report
    • Peer Reviewed
  • [Journal Article] New trace formulas in terms of resonances for three-dimensional Schroedinger operators2018

    • Author(s)
      H. Isozaki and E. Korotyaev
    • Journal Title

      Russian Journal of Mathematical Physics

      Volume: 25 Issue: 1 Pages: 27-43

    • DOI

      10.1134/s106192081801003x

    • Related Report
      2017 Annual Research Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] Conic singularities, generalized scattering matrix, and inverse scattering on asymptotically hyperbolic surfaces2017

    • Author(s)
      H. Isozaki, Y. Kurylev and M. Lassas
    • Journal Title

      J. Reine Angew. Math.

      Volume: 724 Issue: 724 Pages: 53-103

    • DOI

      10.1515/crelle-2014-0076

    • Related Report
      2017 Annual Research Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] Inverse spectral theory and the Minkowski problem for the surface of revolution2017

    • Author(s)
      H. Isozaki and E. Korotyaev
    • Journal Title

      Dynamics of PDE

      Volume: 14 Pages: 321-341

    • Related Report
      2017 Annual Research Report
  • [Journal Article] Global transformations preserving Sturm-Liouville spectral data2017

    • Author(s)
      H. Isozaki and E. Korotyaev
    • Journal Title

      Russian Journal of Physics

      Volume: 24 Issue: 1 Pages: 51-68

    • DOI

      10.1134/s1061920817010046

    • Related Report
      2016 Annual Research Report
    • Peer Reviewed / Int'l Joint Research / Acknowledgement Compliant
  • [Journal Article] Spectral propeties of Schroedinger operators on perturbed lattices2016

    • Author(s)
      K. Ando, H. Isozaki and H. Morioka
    • Journal Title

      Ann. Henri Poincare

      Volume: 17 Issue: 8 Pages: 2103-2171

    • DOI

      10.1007/s00023-015-0430-0

    • Related Report
      2016 Annual Research Report
    • Peer Reviewed / Acknowledgement Compliant
  • [Presentation] Continuum limit for lattice Hamiltonians2019

    • Author(s)
      磯崎 洋
    • Organizer
      数理研シンポジウム スペクトル散乱理論とその周辺
    • Related Report
      2019 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] Recent results on the spectral theory and inverse problems for graphene2019

    • Author(s)
      H. Isozaki
    • Organizer
      Doppler Institute Seminar
    • Related Report
      2019 Annual Research Report
  • [Presentation] Continuum limit of scattering solutions for periodic lattices2019

    • Author(s)
      磯崎 洋
    • Organizer
      第170回学習院大スペクトル理論セミナー
    • Related Report
      2019 Annual Research Report
  • [Presentation] Continuum limit for scattering solutions to discrete Schroedinger equations2019

    • Author(s)
      Isozaki Hiroshi
    • Organizer
      Inverse problems seminar, The university of Helsinki
    • Related Report
      2018 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] Spectral theory and inverse scattering on periodic lattices2019

    • Author(s)
      Isozaki Hiroshi
    • Organizer
      Seminaire analyse spectral, University of Aix-Marseille
    • Related Report
      2018 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] 3題噺 WeylのM関数,Minkowski の問題, 六角格子2018

    • Author(s)
      磯崎 洋
    • Organizer
      作用素論セミナー
    • Related Report
      2018 Annual Research Report
    • Invited
  • [Presentation] Spectral theory and inverse scatering on graphen2018

    • Author(s)
      Isozaki Hiroshi
    • Organizer
      Inverse Problems, PDE and Geometry, University of Jyvaskyla
    • Related Report
      2018 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] Inverse scatterng on graphen2018

    • Author(s)
      Hiroshi Isozaki
    • Organizer
      Seminar in geometric analysis, University of Helsinki
    • Related Report
      2017 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] 3題噺 Weylの m関数 Minkowski の問題 六角格子2018

    • Author(s)
      磯崎 洋
    • Organizer
      作用素論セミナー キャンパスプラザ京都
    • Related Report
      2017 Annual Research Report
    • Invited
  • [Presentation] Inverse scattering on perturbed periodic lattices2018

    • Author(s)
      Hiroshi Isozaki
    • Organizer
      Mathematical seminar in Aarhus University (Denmark)
    • Related Report
      2017 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] Inverse scattering on graphen2017

    • Author(s)
      Hiroshi Isozaki
    • Organizer
      Tosio Kato Centennial Conference 東京大学数理科学研究科
    • Related Report
      2017 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] 逆散乱理論からの2つの話題2016

    • Author(s)
      磯崎 洋
    • Organizer
      数理研共同研究 微分方程式に対する散乱理論の展開
    • Place of Presentation
      京都大学数理解析研究所(京都府京都市)
    • Year and Date
      2016-09-07
    • Related Report
      2016 Annual Research Report
    • Invited
  • [Presentation] Invers scattering on non-compact manifolds with general metric2016

    • Author(s)
      磯崎 洋
    • Organizer
      数理研研究集会 低次元モヂュライ空間の幾何学
    • Place of Presentation
      京都大学数理解析研究所(京都府京都市)
    • Related Report
      2016 Annual Research Report
    • Int'l Joint Research / Invited
  • [Book] Maxwell Equation - Inverse Scattering in Electromagnetism2018

    • Author(s)
      H. Isozaki
    • Total Pages
      300
    • Publisher
      World Scientific
    • ISBN
      9789813232693
    • Related Report
      2018 Annual Research Report

URL: 

Published: 2016-04-21   Modified: 2022-07-19  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi