Electronic structure simulation towards magnetic property predictions for metalloenzymic and catalytic molecules
Project/Area Number |
16H04101
|
Research Category |
Grant-in-Aid for Scientific Research (B)
|
Allocation Type | Single-year Grants |
Section | 一般 |
Research Field |
Physical chemistry
|
Research Institution | Nagoya University (2018) Institute for Molecular Science (2016-2017) |
Principal Investigator |
Yanai Takeshi 名古屋大学, 理学研究科(WPI), 教授 (00462200)
|
Co-Investigator(Kenkyū-buntansha) |
中嶋 隆人 国立研究開発法人理化学研究所, 計算科学研究センター, チームリーダー (10312993)
|
Research Collaborator |
CHALUPSKÝ Jakub
RULISEK Lubomir
|
Project Period (FY) |
2016-04-01 – 2019-03-31
|
Project Status |
Completed (Fiscal Year 2018)
|
Budget Amount *help |
¥16,900,000 (Direct Cost: ¥13,000,000、Indirect Cost: ¥3,900,000)
Fiscal Year 2018: ¥5,720,000 (Direct Cost: ¥4,400,000、Indirect Cost: ¥1,320,000)
Fiscal Year 2017: ¥5,980,000 (Direct Cost: ¥4,600,000、Indirect Cost: ¥1,380,000)
Fiscal Year 2016: ¥5,200,000 (Direct Cost: ¥4,000,000、Indirect Cost: ¥1,200,000)
|
Keywords | 理論計算 / 磁性 / 繰り込み群 / 多配置計算 / 摂動計算 / 電子スピン共鳴法 / 金属酵素 / 触媒 |
Outline of Final Research Achievements |
Electron Paramagnetic Resonance method is an experimental approach to characterize chemical phenomena involving radicals or electronic spins. We have developed an efficient theoretical and computational approach for interpretation of EPR spectrum. It is based on quantum chemistry wave function theory with density matrix renormalization group (DMRG), which is suited for reliably describe open-shell molecular systems where strong electron correlation plays a major role in forming their electronic states. We showed that our DMRG based approach is highly efficient for evaluating magnetic properties, such as hyperfine fine constants, and g-tensors, etc, for the radical or open-shell molecular systems. The relativistic extension to handle heavy element systems and quasi-degenerate perturbation theory to account for weak correlation and/or spin-orbit coupling have been developed and assessed for illustrative molecular systems.
|
Academic Significance and Societal Importance of the Research Achievements |
金属錯体・酵素の反応機構や反応性の分子機構を解明するには、磁気分光測定と量子化学計算の連携が極めて強力である。本方法論は、第一原理計算に基づき、多様な金属錯体系への展開することが可能である。従来法は精度を保証することが難しい点があったが、本手法は従来の限界を超えた高精度計算を提示できる。金属錯体の分子構造および金属イオンの電子状態の微細な情報を信頼性高く与えうる。
|
Report
(4 results)
Research Products
(31 results)
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
[Journal Article] MADNESS: A Multiresolution, Adaptive Numerical Environment for Scientific Simulation2016
Author(s)
R. Harrison, G. Beylkin, F. Bischoff, J. Calvin, G. Fann, J. Fosso-Tande, D. Galindo, J. Hammond, R. Hartman-Baker, J. Hill, J. Jia, J. Kottmann, M-J. Yvonne Ou, L. Ratcliff, M. Reuter, A. Richie-Halford, N. Romero, H. Sekino, W. Shelton, A. Vazquez-Mayagoitia, N. Vence, T. Yanai, Y. Yokoi
-
Journal Title
SIAM Journal on Scientific Computing
Volume: 38
Issue: 5
Pages: S123-S142
DOI
Related Report
Peer Reviewed / Int'l Joint Research
-
-
-
-
-
-
-
-
-
-
-
-
-
-