Synthesis of Cp*-supported metal-sulfur clusters as functional analogues of the active site of nitrogenase
Project/Area Number |
16H04116
|
Research Category |
Grant-in-Aid for Scientific Research (B)
|
Allocation Type | Single-year Grants |
Section | 一般 |
Research Field |
Inorganic chemistry
|
Research Institution | Nagoya University |
Principal Investigator |
Ohki Yasuhiro 名古屋大学, 理学研究科, 准教授 (10324394)
|
Project Period (FY) |
2016-04-01 – 2019-03-31
|
Project Status |
Completed (Fiscal Year 2018)
|
Budget Amount *help |
¥17,030,000 (Direct Cost: ¥13,100,000、Indirect Cost: ¥3,930,000)
Fiscal Year 2018: ¥5,330,000 (Direct Cost: ¥4,100,000、Indirect Cost: ¥1,230,000)
Fiscal Year 2017: ¥5,330,000 (Direct Cost: ¥4,100,000、Indirect Cost: ¥1,230,000)
Fiscal Year 2016: ¥6,370,000 (Direct Cost: ¥4,900,000、Indirect Cost: ¥1,470,000)
|
Keywords | 窒素固定化 / ニトロゲナーゼ / 金属-硫黄クラスター / モリブデン / チタン / 窒素 / 硫黄 / クラスター / 鉄 / 窒素活性化 / 金属 / 酵素モデル |
Outline of Final Research Achievements |
Inorganic components consisting of multiple transition metals and sulfur atoms are designated as metal-sulfur clusters, which are essential for various biological functions. The largest biological metal-sulfur cluster thus far structurally identified is the nitrogenase FeMo-cofactor, which catalyzes the reduction of N2 into NH3 under physiological conditions. Although various metal-sulfur clusters structurally relevant to FeMo-cofactor have been synthesized over the years, their use in the activation of N2 has proven challenging to realize, and even the FeMo-cofactor extracted from the protein to organic solvents has not been found to reduce N2. In this research project, we synthesized a series of Cp* (C5Me5)-supported cubic [Mo3S4M] clusters, and demonstrated the activation of N2 and its conversion into NH3 and N2H4 on the [Mo3S4Ti] variant. This result represents an initial step toward modeling the reducing function of the FeMo-cofactor.
|
Academic Significance and Societal Importance of the Research Achievements |
本研究では、多数の金属原子と硫黄原子を集めた「金属-硫黄クラスター」分子を用いて、N2を捕捉し還元できることを世界で初めて実証した。この研究をさらに発展させることで、酵素タンパク中で金属-硫黄クラスターがどのようにN2を捕捉し還元するかを明らかにすることや、酵素のN2還元機能を人工的に再現することが可能になると期待される。
|
Report
(4 results)
Research Products
(34 results)