Project/Area Number |
16H04238
|
Research Category |
Grant-in-Aid for Scientific Research (B)
|
Allocation Type | Single-year Grants |
Section | 一般 |
Research Field |
Materials/Mechanics of materials
|
Research Institution | Kyushu University |
Principal Investigator |
|
Co-Investigator(Kenkyū-buntansha) |
山辺 純一郎 福岡大学, 工学部, 教授 (20532336)
津崎 兼彰 九州大学, 工学研究院, 教授 (40179990)
|
Project Period (FY) |
2016-04-01 – 2019-03-31
|
Project Status |
Completed (Fiscal Year 2018)
|
Budget Amount *help |
¥17,420,000 (Direct Cost: ¥13,400,000、Indirect Cost: ¥4,020,000)
Fiscal Year 2018: ¥4,030,000 (Direct Cost: ¥3,100,000、Indirect Cost: ¥930,000)
Fiscal Year 2017: ¥6,500,000 (Direct Cost: ¥5,000,000、Indirect Cost: ¥1,500,000)
Fiscal Year 2016: ¥6,890,000 (Direct Cost: ¥5,300,000、Indirect Cost: ¥1,590,000)
|
Keywords | 水素脆化 / 高圧水素ガス環境 / 金属材料 / 疲労き裂進展特性 / 破壊靭性 / 疲労き裂 / BCC / FCC / き裂 / 疲労 / 転位 / 金属疲労 / 純鉄 / 炭素鋼 / 材料力学 / 破壊靱性 |
Outline of Final Research Achievements |
Fatigue crack-growth and fracture toughness tests of pure iron (bcc), meta-stable austenitic stainless steels (fcc) and aluminum alloy (fcc) were performed in air and hydrogen gas. The crack morphologies in addition to the slip behavior and dislocation structure in the vicinity of crack tip were observed in each material tested in various conditions, and the crack acceleration mechanisms were explored. As a result, it was found that the hydrogen-induced crack acceleration in each material is caused by a complicated interaction between three fundamental mechanisms; HELP, HESIV and HEDE, leading to different mechanisms depending on the material types.
|
Academic Significance and Societal Importance of the Research Achievements |
水素ステーションや燃料電池自動車の価格を抑えて広く普及させていくためには,「耐水素性に優れるFCC材」に加えて,「水素の影響を受けるが安価なBCC材」の水素ガス中の強度特性を的確に把握し,適材適所で使用していくことが不可欠である.これを実現するためには,広範な金属材料中の強度特性に及ぼす水素の影響を網羅的に把握し,その微視的機構を学術的観点から理解することが必要である.本研究成果をもとに,水素の影響の素過程を解明して影響メカニズムを系統的に分類し,それらの相互作用を考慮して現象を包括的に理解していくことにより,耐水素材料の開発指針の確立や合理的な強度設計指針が可能になる.
|