Project/Area Number |
16H04272
|
Research Category |
Grant-in-Aid for Scientific Research (B)
|
Allocation Type | Single-year Grants |
Section | 一般 |
Research Field |
Thermal engineering
|
Research Institution | Hokkaido University |
Principal Investigator |
|
Co-Investigator(Kenkyū-buntansha) |
田部 豊 北海道大学, 工学研究院, 准教授 (80374578)
大島 伸行 北海道大学, 工学研究院, 教授 (10217135)
|
Project Period (FY) |
2016-04-01 – 2019-03-31
|
Project Status |
Completed (Fiscal Year 2018)
|
Budget Amount *help |
¥17,290,000 (Direct Cost: ¥13,300,000、Indirect Cost: ¥3,990,000)
Fiscal Year 2018: ¥4,030,000 (Direct Cost: ¥3,100,000、Indirect Cost: ¥930,000)
Fiscal Year 2017: ¥5,850,000 (Direct Cost: ¥4,500,000、Indirect Cost: ¥1,350,000)
Fiscal Year 2016: ¥7,410,000 (Direct Cost: ¥5,700,000、Indirect Cost: ¥1,710,000)
|
Keywords | 燃料電池 / PEM / 水輸送 / 酸素拡散 / 高効率 / 熱工学 / 固体高分子 / 限界電流密度 / 生成水 / 二相流 |
Outline of Final Research Achievements |
The research was conducted to understand the multi-scale transport phenomena in the polymer electrolyte fuel cells. The research revealed that hydrophilic carbon-fiber MPL (micro porous layer) gives better water transport ability than the conventional type, resulting in better cell performance and cold-start capability. The carbon type called “Vulcan”, which has more condensed inside-structure than the conventional one, has an ability to increase oxygen transport rate at the surface of the Pt catalyst. Additionally, the cell performance appears to be improved by the optimum control of side-chain structure of ionomers and their distribution in the catalyst layer. The Graphene, which has a structure of mono-layer of carbon atoms, may have possibility of greatly-reducing Pt amount for the same cell performance. The research also shows the optimum grid structure of gas diffusion layers by the developed scale-model experiment and Lattice Boltzmann Simulation.
|
Academic Significance and Societal Importance of the Research Achievements |
本研究は将来有望な水素を高効率で電気変換する燃料電池を対象とし、高電流密度化に対して大きな影響を及ぼす物質輸送現象に焦点を当て、一連の研究を行なったものである。その結果、種々の運転条件に対して良好な物質移動を実現するために有効な触媒層やガス拡散層の多孔構造、濡れ性および熱物性のほか、ポリマーとPt担持カーボンの最適構造を明らかにすることができた。これにより、次世代における中心的なエネルギー変換器の一つとして期待される燃料電池のコスト低減、高出力化ならびに高効率化を達成するために、有用な種々の知見が得られたといえる。
|