Phonon engineering using graphene heterostructures towards energy harvesting
Project/Area Number |
16H04283
|
Research Category |
Grant-in-Aid for Scientific Research (B)
|
Allocation Type | Single-year Grants |
Section | 一般 |
Research Field |
Thermal engineering
|
Research Institution | Osaka Prefecture University |
Principal Investigator |
Takayuki Arie 大阪府立大学, 工学(系)研究科(研究院), 准教授 (80533017)
|
Research Collaborator |
AKITA seiji
TAKEI kuniharu
|
Project Period (FY) |
2016-04-01 – 2019-03-31
|
Project Status |
Completed (Fiscal Year 2018)
|
Budget Amount *help |
¥17,290,000 (Direct Cost: ¥13,300,000、Indirect Cost: ¥3,990,000)
Fiscal Year 2018: ¥3,120,000 (Direct Cost: ¥2,400,000、Indirect Cost: ¥720,000)
Fiscal Year 2017: ¥4,290,000 (Direct Cost: ¥3,300,000、Indirect Cost: ¥990,000)
Fiscal Year 2016: ¥9,880,000 (Direct Cost: ¥7,600,000、Indirect Cost: ¥2,280,000)
|
Keywords | グラフェン / フォノン / 熱電変換 / フォノンエンジニアリング / ナノマイクロ熱工学 / 熱伝導率 / 同位体 |
Outline of Final Research Achievements |
The performance of thermoelectric materials relies on both the electrical and thermal properties of the materials. Since the main heat carrier of graphene is phonon, in this study we investigate the thermal transport properties of graphene by introducing structural modifications such as isotopes, defects and biaxial strains. In isotopically modified graphene heterostructures, the pseudo-ballistic transport of phonon seems to appear when the periodicity is close to the phonon mean free path in graphene. On the other hand, the introduction of defects and strains reduces the thermal conductivity of graphene by approximately 80%. These results imply that introducing these structural modifications is an effective way of enhancing the performance of the thermoelectric devices using graphene.
|
Academic Significance and Societal Importance of the Research Achievements |
熱を電気に変換する熱電変換は、従来廃棄されていた熱エネルギーを再利用するという観点から、現在非常に重要な技術と位置づけられている。熱電変換ではできるだけ電気特性を向上させるとともに熱伝導特性を低下させると性能が向上するが、両立させるのは困難である。本研究では二次元原子材料であるグラフェンをモデル材料とし、同位体や欠陥などを導入することで、電気特性を維持しつつ熱伝導特性を低下させることに成功した。今後さらに高性能の材料を使う上でも、本研究で得られた知見は有用である。
|
Report
(4 results)
Research Products
(32 results)