Process technologies for integrating nano-crystalline Si and wide-bandgap semiconductors aiming to fabricating novel optoelectronics devices
Project/Area Number |
16H04327
|
Research Category |
Grant-in-Aid for Scientific Research (B)
|
Allocation Type | Single-year Grants |
Section | 一般 |
Research Field |
Electronic materials/Electric materials
|
Research Institution | University of Yamanashi |
Principal Investigator |
KONDOH Eiichi 山梨大学, 大学院総合研究部, 教授 (70304871)
|
Co-Investigator(Kenkyū-buntansha) |
Bernard Gelloz 名古屋大学, 工学研究科(国際), その他 (40343157)
金 蓮花 山梨大学, 大学院総合研究部, 准教授 (40384656)
|
Project Period (FY) |
2016-04-01 – 2019-03-31
|
Project Status |
Completed (Fiscal Year 2018)
|
Budget Amount *help |
¥8,060,000 (Direct Cost: ¥6,200,000、Indirect Cost: ¥1,860,000)
Fiscal Year 2018: ¥2,210,000 (Direct Cost: ¥1,700,000、Indirect Cost: ¥510,000)
Fiscal Year 2017: ¥2,210,000 (Direct Cost: ¥1,700,000、Indirect Cost: ¥510,000)
Fiscal Year 2016: ¥3,640,000 (Direct Cost: ¥2,800,000、Indirect Cost: ¥840,000)
|
Keywords | 超臨界流体 / ポーラスシリコン / エリプソメーター / 多孔質シリコン / 超臨界CO2流体 / porous silicon / supercritical fluids / zinc oxide / 酸化亜鉛 / 発光デバイス |
Outline of Final Research Achievements |
Porous silicon (PS) is an attractive candidate for luminescent devices. Filling PS layers with a conductive substance is an approach to improve the electrical characteristics of PS light-emitting devices (LEDs). Supercritical fluid chemical deposition (SFCD) has an excellent capability of filling nano- /meso-porous structures. In this work, we deposited Cu-doped transparent ZnO (Cu:ZnO) films using the SFCD technique into nano features. Mixtures of Zn and Cu organometallic complexes were used as a precursor for SCFD, and Cu:ZnO films were obtained. SiO2 nano tranches and porous Si were filled with Cu:ZnO. A high-resolution imaging ellipsometer, which has been developed by our group, was employed to characterize the quality of PS layers in a quick and easy manner compared to SEM. Si/SiO2 core-shell particles were also fabricated and the world-record quantum yield of 61% was realized. In summary, all the elemental processes to realize high-efficiency PS LEDs were successfully developed.
|
Academic Significance and Societal Importance of the Research Achievements |
シリコンは安価で安全な材料であるが発光デバイスとはしては使えない。多孔質シリコンは発光することが知られているが、発光効率が高かった。本研究では多孔質シリコンに透明な電極を埋め込んで高効率な発光デバイス作製するための、要素技術を開発した。透明化によりより多くの発光を利用できる。また埋め込みに用いた超臨界流体は環境にやさしい媒体で製作コストを低減させることができる。さらにイメージングエリプソメータを利用して、複雑な電子顕微鏡を用いずに光学的な観察で高品質多孔質シリコンを製造する技術も確立した。以上のように、本研究の成果は安価な発光デバイスの製造を可能たらしめるに必要なものである。
|
Report
(4 results)
Research Products
(39 results)