Project/Area Number |
16H04506
|
Research Category |
Grant-in-Aid for Scientific Research (B)
|
Allocation Type | Single-year Grants |
Section | 一般 |
Research Field |
Composite materials/Surface and interface engineering
|
Research Institution | The University of Tokyo |
Principal Investigator |
Terashima Kazuo 東京大学, 大学院新領域創成科学研究科, 教授 (30176911)
|
Project Period (FY) |
2016-04-01 – 2019-03-31
|
Project Status |
Completed (Fiscal Year 2018)
|
Budget Amount *help |
¥17,420,000 (Direct Cost: ¥13,400,000、Indirect Cost: ¥4,020,000)
Fiscal Year 2018: ¥4,030,000 (Direct Cost: ¥3,100,000、Indirect Cost: ¥930,000)
Fiscal Year 2017: ¥6,240,000 (Direct Cost: ¥4,800,000、Indirect Cost: ¥1,440,000)
Fiscal Year 2016: ¥7,150,000 (Direct Cost: ¥5,500,000、Indirect Cost: ¥1,650,000)
|
Keywords | プラズマ / ソリューションプラズマ / 電子線励起プラズマ / 電子線励起ソリューションプラズマ / 表面処理プロセス / 微粒子 / 材料プロセス / 電子ビーム / プラズマプロセス / 材料加工・処理 / プラズマ加工 / 液体 / 電界放出 / 分離 |
Outline of Final Research Achievements |
In this study, we created an electron beam simulated solution plasma and applied it to the surface treatment process. With regard to the former, generation of new field emission dielectric barrier discharge in high density media such as high pressure, liquid and supercritical fluid, voltage / current characteristics, and spectroscopic measurement were conducted to clarify its characteristics. In addition, the calculation simulation revealed the likelihood of qualitative behavior regarding the dependence of the firing voltage on the media generation of the discharge. In addition, by using carbon nanotubes as electrodes, we succeeded in generating stable plasma in a high density environment including supercritical and liquid. In addition, as an application of this plasma process, we succeeded in handling and deposition of fine particles.
|
Academic Significance and Societal Importance of the Research Achievements |
本研究の成果は近年注目を浴びている、液中をはじめとする高圧、超臨界流体中での放電、放電プラズマの新しいモードの学理の構築の第一歩の基礎研究として、また、それらを用いたプラズマ表面処理技術への応用展開の第一歩として意義の深いものである。今後、これらの基礎科学の進展とともに、液中をはじめとする高圧、超臨界流体などの高密度環境中での放電、放電プラズマの利用が飛躍的に容易になるとともに医療、環境、材料、エネルギー、燃焼といtった滝の分野に渡るプラズマ応用範囲の広がりを大いに期待させる研究となっている。
|