Preparation of highly active and durable oxygen electrodes using carbon nanofibers with a unique orientation
Project/Area Number |
16H04530
|
Research Category |
Grant-in-Aid for Scientific Research (B)
|
Allocation Type | Single-year Grants |
Section | 一般 |
Research Field |
Material processing/Microstructural control engineering
|
Research Institution | Hokkaido University |
Principal Investigator |
|
Research Collaborator |
Kowalski Damian
Aoki Yoshitaka
Zhu Chunyu
Yamada Naohito
Sakashita Ryosuke
Sato Yuki
|
Project Period (FY) |
2016-04-01 – 2019-03-31
|
Project Status |
Completed (Fiscal Year 2018)
|
Budget Amount *help |
¥18,330,000 (Direct Cost: ¥14,100,000、Indirect Cost: ¥4,230,000)
Fiscal Year 2018: ¥2,860,000 (Direct Cost: ¥2,200,000、Indirect Cost: ¥660,000)
Fiscal Year 2017: ¥2,860,000 (Direct Cost: ¥2,200,000、Indirect Cost: ¥660,000)
Fiscal Year 2016: ¥12,610,000 (Direct Cost: ¥9,700,000、Indirect Cost: ¥2,910,000)
|
Keywords | カーボンナノファイバー / 鋳型合成 / 電極触媒 / 炭素担体 / 酸素発生 / 酸素還元 / 燃料電池 / 空気電池 / 酸化物担持 / 電解析出 / 炭素ナノファイバー / 鋳型炭素 / 白金ナノ粒子 / プレートレット構造 / 鋳型法 |
Outline of Final Research Achievements |
In this study, platelet-type carbon nanofibers (pCNF) were prepared using porous anodic alumina template with many cylindrical nanopore channels and Co3O4 nanoparticles were deposited on pCNF for tailoring highly active and durable oxygen reduction and oxygen evolution reactions that would be required to develop next-generation fuel cells and metal-air batteries. We found that Co3O4 nanoparticles were uniformly dispersed on pCNF that has exposed carbon edge plane at the side wall of pCNF, and the Co3O4/pCNF exhibited a good oxygen reduction reaction activity. In contrast, poor dispersion of Co3O4 was found on multi-walled carbon nanotubes, in which basal planes of carbon were exposed on the side wall. Through this study, we found the importance of carbon surface structure on the dispersion of oxide nanoparticles and electrocatalytic activities.
|
Academic Significance and Societal Importance of the Research Achievements |
従来の化石エネルギーに依存した社会から脱却し,再生可能エネルギーの有効利用のために,高効率な蓄電やエネルギー変換を可能とする電気化学デバイスの重要性が増している。酸素還元反応や酸素発生反応は燃料電池や金属-空気電池の正極反応であり,この高活性電極の開発が社会から求められている。本研究は,そのような高活性電極の設計に重要な指針を与えるものであり,導電性炭素担体の構造制御が触媒となる酸化物ナノ粒子の均一担持とともに電極触媒活性にも重要な影響を与えることを明らかとした。
|
Report
(4 results)
Research Products
(8 results)