Project/Area Number |
16H04622
|
Research Category |
Grant-in-Aid for Scientific Research (B)
|
Allocation Type | Single-year Grants |
Section | 一般 |
Research Field |
Nuclear fusion studies
|
Research Institution | National Institute for Fusion Science |
Principal Investigator |
|
Research Collaborator |
Masuzaki Suguru
Morita Shigeru
Dai Shuyu
Oishi Tetsutarou
Kuzmin Arseniy
Kobayashi Taisuke
Kawamura Gakushi
Zhang Hongming
Mukai Kiyohumi
Schmitz Oliver
Bader Aaron
Feng Yuehe
Ahn Joon-Wook
|
Project Period (FY) |
2016-04-01 – 2019-03-31
|
Project Status |
Completed (Fiscal Year 2018)
|
Budget Amount *help |
¥17,680,000 (Direct Cost: ¥13,600,000、Indirect Cost: ¥4,080,000)
Fiscal Year 2018: ¥2,340,000 (Direct Cost: ¥1,800,000、Indirect Cost: ¥540,000)
Fiscal Year 2017: ¥1,950,000 (Direct Cost: ¥1,500,000、Indirect Cost: ¥450,000)
Fiscal Year 2016: ¥13,390,000 (Direct Cost: ¥10,300,000、Indirect Cost: ¥3,090,000)
|
Keywords | 核融合 / ダイバータ / 放射 / 3次元効果 / 磁力線構造 / 3次元不純物発光分布 / 放射冷却 / 不純物輸送 / 3次元磁場効果 / プラズマ核融合 / 不純物発光・輸送 / プラズマ・核融合 / 不純物発光 / トポロジー |
Outline of Final Research Achievements |
In a magnetically confined nuclear fusion reactor, the excessive heat load on the plasma facing component (PFC) is a crucial issue. In order to mitigate the heat load, radiation cooling of edge plasma is considered as a possible scheme. We have investigated the impact of 3D edge magnetic field structure on the radiation cooling. It has been found that, the application of external magnetic perturbation field enhances radiation cooling from impurity ions of lower charge states, the enhanced radiation region is located outside of the confinement region, the total heat load on the PFC decreases, but there appears an increased region locally, and that the amount of radiation cooling is independent of the strength of the perturbation field. It is also found that the current transport model of plasma has to be improved in order to reproduce the experimental results.
|
Academic Significance and Societal Importance of the Research Achievements |
本研究の成果から、磁場閉じ込め型核融合炉における装置壁への過剰な熱負荷を、周辺磁場を変化させることによって制御できることが明らかになった。また、磁化プラズマ中における燃料粒子と不純物粒子の相互作用(原子・分子過程)に起因する放射損失過程によって、プラズマの熱エネルギーが電磁波として放出されること、またそれにともなうエネルギー輸送過程の理解が深った。現状の数値シミュレーションで広く用いられているプラズマ輸送モデルの改善点が明らかになった。
|