Assembly of synthetic metabolon and establishment of structural basis of molecular design
Project/Area Number |
16H04732
|
Research Category |
Grant-in-Aid for Scientific Research (B)
|
Allocation Type | Single-year Grants |
Section | 一般 |
Research Field |
System genome science
|
Research Institution | Nihon University |
Principal Investigator |
|
Research Collaborator |
YOSHIKOSHI kensuke 日本大学, 工学部, 博士研究員 (10792054)
|
Project Period (FY) |
2016-04-01 – 2019-03-31
|
Project Status |
Completed (Fiscal Year 2018)
|
Budget Amount *help |
¥16,380,000 (Direct Cost: ¥12,600,000、Indirect Cost: ¥3,780,000)
Fiscal Year 2018: ¥4,940,000 (Direct Cost: ¥3,800,000、Indirect Cost: ¥1,140,000)
Fiscal Year 2017: ¥4,940,000 (Direct Cost: ¥3,800,000、Indirect Cost: ¥1,140,000)
Fiscal Year 2016: ¥6,500,000 (Direct Cost: ¥5,000,000、Indirect Cost: ¥1,500,000)
|
Keywords | インテグラーゼ / ゲノム工学 / 合成生物学 / セルロソーム / タンパク質工学 / メタボロン / 酵素 / 遺伝子 / 微生物 / 酵素複合体 / 無細胞蛋白質合成 |
Outline of Final Research Achievements |
Metabolon is a multi-enzyme complex assembled with metabolic enzymes that constitute a biosynthetic pathway. Clustering metabolic enzymes increases the in vivo local concentration of metabolic enzymes and accelerates flux of the substrates and products between metabolic enzymes, which is thought to enhance biosynthesis even under the condition of low expression levels of metabolic enzymes. In this study, we addressed to the improvement of the efficiency of biosynthesis by the assembly of synthetic metabolon, which is artificially assembled with utilizing interactions between the scaffolds and enzymes of plant biomass-degrading multi-enzyme complex. The biosynthetic pathways of polyketides were integrated into the Escherichia coli genome using a site-specific recombinase. Although the expression levels of metabolic enzymes decreased by the genomic integration of biosynthetic pathways, the results indicated that clustering metabolic enzymes can improve the efficiency of biosynthesis.
|
Academic Significance and Societal Importance of the Research Achievements |
長鎖DNAが導入可能な大腸菌ゲノムを対象に、ポリケタイド生合成系の遺伝子導入を行った。生合成経路をゲノム遺伝子導入した場合、代謝酵素の発現量は低下するが、代謝酵素を人工的に複合体化することで、酵素発現量が少ない環境下であっても、生合成効率を改善できることを示した。本研究成果により、ゲノム遺伝子導入が必要な長鎖DNAから成る生合成系に対しても、代謝酵素の複合体化によって、効率的な物質生産が可能になると期待される。
|
Report
(4 results)
Research Products
(7 results)
-
[Journal Article] Comparative Biochemical Analysis of Cellulosomes Isolated from Clostridium clariflavum DSM 19732 and Clostridium thermocellum ATCC 27405 Grown on Plant Biomass2019
Author(s)
Shinoda, S., Kurosaki, M., Kokuzawa, T., Hirano, K., Takano, H., Ueda, K., Haruki, M., and Hirano, N.
-
Journal Title
Applied Biochemistry and Biotechnology
Volume: 187
Issue: 3
Pages: 994-1010
DOI
Related Report
Peer Reviewed
-
-
[Journal Article] Enzymatic Diversity of the Clostridium thermocellum Cellulosome Is Crucial for the Degradation of Crystalline Cellulose and Plant Biomass.2016
Author(s)
Hirano, K., Kurosaki, M., Nihei, S., Hasegawa, H., Shinoda, S., Haruki, M., and Hirano, N.
-
Journal Title
Scientific Reports
Volume: 6
Issue: 1
Pages: 35709-35709
DOI
Related Report
Peer Reviewed / Open Access / Acknowledgement Compliant
-
-
-
-