• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Study on the osmo-sensing mechanism in yeast

Research Project

Project/Area Number 16H04761
Research Category

Grant-in-Aid for Scientific Research (B)

Allocation TypeSingle-year Grants
Section一般
Research Field Functional biochemistry
Research InstitutionThe University of Tokyo

Principal Investigator

Tatebayashi Kazuo  東京大学, 医科学研究所, 准教授 (50272498)

Project Period (FY) 2016-04-01 – 2019-03-31
Project Status Completed (Fiscal Year 2019)
Budget Amount *help
¥17,550,000 (Direct Cost: ¥13,500,000、Indirect Cost: ¥4,050,000)
Fiscal Year 2018: ¥5,070,000 (Direct Cost: ¥3,900,000、Indirect Cost: ¥1,170,000)
Fiscal Year 2017: ¥5,720,000 (Direct Cost: ¥4,400,000、Indirect Cost: ¥1,320,000)
Fiscal Year 2016: ¥6,760,000 (Direct Cost: ¥5,200,000、Indirect Cost: ¥1,560,000)
Keywords高浸透圧 / 酵母 / MAP kinase経路 / センサー / シグナル伝達 / リン酸化 / 環境ストレス / MAPキナーゼ経路 / 高浸透圧応答 / センシング / MAPキナーゼ / 浸透圧 / 膜タンパク質 / HOG経路 / 高浸透圧センシング / 相互作用 / HOG MAPK経路
Outline of Final Research Achievements

The MAP kinase (MAPK) Hog1 is the central regulator of osmoadaptation in yeast. Upon high osmolarity, the Sho1 and Sln1 membrane-associated osmosensors, respectively, activate the Ste11-Pbs2-Hog1 MAPK cascade and the Ssk2/Ssk22-Pbs2-Hog1 MAPK cascade. Sho1 binds to several transmembrane proteins such as Opy2 to form an osmo-sensing protein complex for transduction of an activating signal. In this work, we identified two binding sites between Sho1 and Opy2, and found that the Sho1-Opy2 interaction enhances the signaling efficiency from Ste11 MAPKKK to Pbs2 MAPKK. In addition, we found that the Hog1 MAPK phosphorylation by Pbs2 MAPKK is enhanced by high osmolarity independently of the membrane-associated osmosensors. The lack of the osmotic enhancement of the Pbs2-Hog1 reaction suppresses Hog1 activation by basal MAP3K activities and prevents pheromone-to-Hog1 crosstalk in the absence of osmostress, which enable the yeast cells to respond appropriately to environmental stresses.

Academic Significance and Societal Importance of the Research Achievements

本研究で明らかになった膜タンパク質型及び非膜タンパク質型の高浸透圧センサーを介した高浸透圧応答制御機構は、適切な環境ストレス応答を保障する仕組みとしてヒトなどの高等真核生物にも当てはまる可能性が高い。今後の検証を通じて、環境ストレス応答制御の全体像の理解や、環境ストレス耐性の動植物への付与技術の開発などに繋がることが期待される。また本研究で解明されたHog1 MAPKの制御機構に関する知見は、ヒトMAPKの制御破綻が引き起こす癌や自己免疫疾患といった疾患の治療法・治療薬の開発にも役立つと考えられる。

Report

(4 results)
  • 2019 Final Research Report ( PDF )
  • 2018 Annual Research Report
  • 2017 Annual Research Report
  • 2016 Annual Research Report
  • Research Products

    (10 results)

All 2020 2019 2017 2016 Other

All Journal Article (2 results) (of which Int'l Joint Research: 1 results,  Peer Reviewed: 2 results,  Open Access: 2 results) Presentation (6 results) (of which Int'l Joint Research: 2 results,  Invited: 2 results) Remarks (2 results)

  • [Journal Article] Osmostress enhances activating phosphorylation of Hog1 MAP kinase by mono-phosphorylated Pbs2 MAP2K.2020

    • Author(s)
      Tatebayashi K, Yamamoto K, Tomida T, Nishimura A, Takayama T, Oyama M, Kozuka-Hata H, Adachi-Akahane S, Tokunaga Y, Saito H
    • Journal Title

      EMBO J

      Volume: 39 Issue: 5

    • DOI

      10.15252/embj.2019103444

    • Related Report
      2018 Annual Research Report
    • Peer Reviewed / Open Access / Int'l Joint Research
  • [Journal Article] Interaction between the transmembrane domains of Sho1 and Opy2 enhances the signaling efficiency of the Hog1 MAP kinase cascade in Saccharomyces cerevisiae2019

    • Author(s)
      Takayama Tomomi、Yamamoto Katsuyoshi、Saito Haruo、Tatebayashi Kazuo
    • Journal Title

      PLOS ONE

      Volume: 14 Issue: 1 Pages: e0211380-e0211380

    • DOI

      10.1371/journal.pone.0211380

    • Related Report
      2017 Annual Research Report
    • Peer Reviewed / Open Access
  • [Presentation] 複数の異なる浸透圧センサーを介した酵母の高浸透圧応答性MAPK経路の制御2019

    • Author(s)
      舘林和夫
    • Organizer
      第92回日本生化学会大会 シンポジウム「浸透圧ストレスシグナリングの最前線」
    • Related Report
      2018 Annual Research Report
    • Invited
  • [Presentation] 酵母の高浸透圧センシング機構と環境応答シグナルの制御2019

    • Author(s)
      舘林和夫
    • Organizer
      第11回トランスポーター研究会九州部会
    • Related Report
      2018 Annual Research Report
    • Invited
  • [Presentation] 高浸透圧がモノリン酸化Pbs2 MAPKキナーゼによるHog1 MAPキナーゼのリン酸化を促進することで、高浸透圧刺激特異的HOG経路活性化が保障される2019

    • Author(s)
      舘林和夫、山本勝良、尾山大明、秦裕子、冨田太一郎、徳永裕二、斎藤春雄
    • Organizer
      第42回日本分子生物学会年会
    • Related Report
      2018 Annual Research Report
  • [Presentation] Activation of the Hog1 MAP kinase requires a direct osmotic priming of Hog1 itself as well as stimulation of the upstream osmosensors2017

    • Author(s)
      Kazuo Tatebayashi, Katsuyoshi Yamamoto, Taichiro Tomida, Satomi Adachi-Akahane, Akiko Nishimura, Tomomi Takayama, and Haruo Saito
    • Organizer
      ConBio2017
    • Related Report
      2017 Annual Research Report
  • [Presentation] Roles of molecular assemblies in osmoregulatory signal transduction.2016

    • Author(s)
      Saito H, Tatebayashi K, Yamamoto K, Nishimura A, Takayama T.
    • Organizer
      14th International Congress on Yeasts (Awaji Yumebutai)
    • Related Report
      2016 Annual Research Report
    • Int'l Joint Research
  • [Presentation] Osmosensing and scaffolding functions of the oligomeric four-transmembrane osmosensor Sho1.2016

    • Author(s)
      Tatebayashi K, Yamamoto K, Takayama T, Nishimura A, Saito H.
    • Organizer
      14th International Congress on Yeasts (Awaji Yumebutai)
    • Related Report
      2016 Annual Research Report
    • Int'l Joint Research
  • [Remarks] 地球温暖化などがもたらす環境ストレス下で細胞が適切に応答する仕組み

    • URL

      https://www.u-tokyo.ac.jp/focus/ja/press/z0201_00105.html

    • Related Report
      2018 Annual Research Report
  • [Remarks] 東大医科研 分子細胞情報分野ホームページ

    • URL

      http://www.ims.u-tokyo.ac.jp/MolCellSignal/index.html

    • Related Report
      2016 Annual Research Report

URL: 

Published: 2016-04-21   Modified: 2021-02-19  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi