Project/Area Number |
16H05531
|
Research Category |
Grant-in-Aid for Scientific Research (B)
|
Allocation Type | Single-year Grants |
Section | 一般 |
Research Field |
Dental engineering/Regenerative dentistry
|
Research Institution | Tokyo Medical and Dental University |
Principal Investigator |
|
Co-Investigator(Kenkyū-buntansha) |
野崎 浩佑 東京医科歯科大学, 大学院医歯学総合研究科, 助教 (00507767)
永井 亜希子 愛知学院大学, 歯学部, 准教授 (40360599)
中村 美穂 東京医科歯科大学, 生体材料工学研究所, 非常勤講師 (40401385)
堀内 尚紘 東京医科歯科大学, 生体材料工学研究所, 助教 (90598195)
|
Project Period (FY) |
2016-04-01 – 2020-03-31
|
Project Status |
Completed (Fiscal Year 2019)
|
Budget Amount *help |
¥17,160,000 (Direct Cost: ¥13,200,000、Indirect Cost: ¥3,960,000)
Fiscal Year 2019: ¥2,730,000 (Direct Cost: ¥2,100,000、Indirect Cost: ¥630,000)
Fiscal Year 2018: ¥2,730,000 (Direct Cost: ¥2,100,000、Indirect Cost: ¥630,000)
Fiscal Year 2017: ¥3,510,000 (Direct Cost: ¥2,700,000、Indirect Cost: ¥810,000)
Fiscal Year 2016: ¥8,190,000 (Direct Cost: ¥6,300,000、Indirect Cost: ¥1,890,000)
|
Keywords | エレクトレット / バイオセラミックス / 表面電荷 / 電気分極 / 再生医療 / 生体材料 / 無機材料 / 生体と材料界面 / バイオインターフェイス / 表面改質 / 生体と材料間界面 |
Outline of Final Research Achievements |
Although the medical and academic demands expect the progress of biomaterials for regenerative medicine, there are many difficulties to overcome before clinical use. The development of excellent biomaterials as scaffolds that support cell adhesion, proliferation, and differentiation is essential for regenerative medicine in addition to the cells and growth factors. There is a strong demand for further enhancement and development of existing biomaterials to regenerate large-scale defects in the fields of orthopedics and oral surgery. In this study, we established an application method to promote material-driven regenerative medicine that can control cell behavior by physical, chemical, or biological action. We further developed a universal theory describing material-cell interactions using in vitro and in vivo models.
|
Academic Significance and Societal Importance of the Research Achievements |
我々は,バイオエレクトレットの外部作用力を勘案して,材料が自立的に発する相互作用力を用いて周辺環境を三次元的に制御する材料は生体内において骨再生や血管内皮細胞の修復や神経細胞の再生,あるいは創傷皮膚の修復を中心に有効で、これらの材料が持つ生物学的作用を起点にマテリアルバイオロジ―を提唱してきた.さらにこれらの作用力は未分化幹細胞や異種細胞間のシグナル伝達を制御できることも考えられ,その作用機序の解明は普遍的理論構築に至り,新たな再生医療への道が開拓されるものと期待できる.これらの成果は申請者らが他に先駆け発表し,世界的に評価を得てきている.
|