Unified Model of Human Musculo-skeletal Analysis and Finite Element Analysis towards Personalized Artificial Joint
Project/Area Number |
16H05874
|
Research Category |
Grant-in-Aid for Young Scientists (A)
|
Allocation Type | Single-year Grants |
Research Field |
Intelligent robotics
|
Research Institution | The University of Tokyo |
Principal Investigator |
Yamamoto Ko 東京大学, 大学院情報理工学系研究科, 准教授 (20641880)
|
Project Period (FY) |
2016-04-01 – 2020-03-31
|
Project Status |
Completed (Fiscal Year 2020)
|
Budget Amount *help |
¥15,600,000 (Direct Cost: ¥12,000,000、Indirect Cost: ¥3,600,000)
Fiscal Year 2019: ¥2,470,000 (Direct Cost: ¥1,900,000、Indirect Cost: ¥570,000)
Fiscal Year 2018: ¥4,810,000 (Direct Cost: ¥3,700,000、Indirect Cost: ¥1,110,000)
Fiscal Year 2017: ¥4,810,000 (Direct Cost: ¥3,700,000、Indirect Cost: ¥1,110,000)
Fiscal Year 2016: ¥3,510,000 (Direct Cost: ¥2,700,000、Indirect Cost: ¥810,000)
|
Keywords | デジタルヒューマン / 有限要素解析 / 人工関節 / 感度解析 / 最適化計算 / 筋骨格モデル / 二足歩行制御 / デジタルヒューマンモデル |
Outline of Final Research Achievements |
This study developed a unified model of human musculo-skeletal system and artificial joint to predict human motions after the knee replacement surgery. This model allows us to compute the muscle and ligament forces during a motion, and to compute the stress distribution between the components of the artificial knee joint. The validity of the model was verified by comparing simulation results with measurement data of an actual patient. Based on the finite element analysis, dominant parameters of the artificial knee geometry were extracted, which were applied to a design method of an artificial knee shape. Moreover, a method to estimate a patient’s motion control of the knee joints as the joint viscoelasticity was proposed to predict the patient motion after the knee replacement.
|
Academic Significance and Societal Importance of the Research Achievements |
本研究成果は、患者個人の特徴に合わせた人工関節の設計論の基盤技術であり、超高齢社会において重要となるquality of lifeの向上に寄与する。同時に、個人の身体の力学パラメータの推定技術や、体の動かし方の特徴を粘弾性として抽出し運動の予測に用いる技術は、術前の予測シミュレーションだけでなく、スポーツのトレーニングやロボットの制御にも応用できるものである。さらに、本研究で用いた有限要素解析と筋骨格モデルの統合技術は、柔らかい材料の有限要素解析と硬い材料の力学計算の統合計算ともみなすことができ、これは近年注目されているソフトロボットの運動解析や制御にも応用できる技術である。
|
Report
(5 results)
Research Products
(26 results)