Control of Cellular Responses with 3-in-1 Chip Mimicking In Vivo Microenvironment
Project/Area Number |
16H05906
|
Research Category |
Grant-in-Aid for Young Scientists (A)
|
Allocation Type | Single-year Grants |
Research Field |
Biomedical engineering/Biomaterial science and engineering
|
Research Institution | Tohoku University |
Principal Investigator |
Funamoto Kenichi 東北大学, 学際科学フロンティア研究所, 准教授 (70451630)
|
Research Collaborator |
KAMM Roger
YOSHINO Daisuke
|
Project Period (FY) |
2016-04-01 – 2019-03-31
|
Project Status |
Completed (Fiscal Year 2018)
|
Budget Amount *help |
¥26,000,000 (Direct Cost: ¥20,000,000、Indirect Cost: ¥6,000,000)
Fiscal Year 2018: ¥4,160,000 (Direct Cost: ¥3,200,000、Indirect Cost: ¥960,000)
Fiscal Year 2017: ¥4,160,000 (Direct Cost: ¥3,200,000、Indirect Cost: ¥960,000)
Fiscal Year 2016: ¥17,680,000 (Direct Cost: ¥13,600,000、Indirect Cost: ¥4,080,000)
|
Keywords | マイクロ・ナノデバイス / 細胞・組織 / 生物・生体工学 / 流体工学 / ナノバイオ / マイクロ流体デバイス / がん微小環境 / 低酸素 |
Outline of Final Research Achievements |
3-in-1 chip mimicking in vivo microenvironment was developed to simultaneously control oxygen tension and mechanical and chemical stimuli to cells. The microfluidic chip enabled to generate a uniform oxygen state down to 0.3% or a linear oxygen gradient within 15 minutes by supplying gas mixtures into the gas channels in the chip. Behavior of the human breast cancer cells suspended in type I collagen gel were then observed while controlling oxygen tension using the developed chip. As the results, it was revealed that the hypoxic environment promoted the proliferation and migration of the cancer cells. Moreover, the hypoxic response of breast cancer cells was changed by cell-cell interaction when co-cultured with vascular endothelial cells.
|
Academic Significance and Societal Importance of the Research Achievements |
生体内は大気中と比較して低酸素状態にあるにも関わらず、簡便性の観点から多くの細胞実験は常酸素条件下で行われてきた。開発した3-in-1生体模擬チップは、細胞周囲の酸素分圧を任意の分布に短時間内に制御し、細胞に力学的刺激と化学的刺激を負荷することで生理的環境と病的環境の両方を再現でき、細胞群の即時的応答の観察を可能にした。本研究で実施したがんの増殖と転移の機序の解明の研究に限らず、血管新生や幹細胞の分化と増殖の制御、低酸素負荷が関係する循環器系疾患の予防法の確立における革新的な研究技術であり、重要な知見をもたらすと期待される。再生医療や薬剤の開発などの先進医療の発展にも寄与する技術である。
|
Report
(4 results)
Research Products
(14 results)