Nano-assembly method of the electrocatalyst for widening of operation condition of polymer electrolyte fuel cell
Project/Area Number |
16H06056
|
Research Category |
Grant-in-Aid for Young Scientists (A)
|
Allocation Type | Single-year Grants |
Research Field |
Device related chemistry
|
Research Institution | Kyushu University |
Principal Investigator |
|
Project Period (FY) |
2016-04-01 – 2019-03-31
|
Project Status |
Completed (Fiscal Year 2018)
|
Budget Amount *help |
¥25,480,000 (Direct Cost: ¥19,600,000、Indirect Cost: ¥5,880,000)
Fiscal Year 2018: ¥8,190,000 (Direct Cost: ¥6,300,000、Indirect Cost: ¥1,890,000)
Fiscal Year 2017: ¥8,190,000 (Direct Cost: ¥6,300,000、Indirect Cost: ¥1,890,000)
Fiscal Year 2016: ¥9,100,000 (Direct Cost: ¥7,000,000、Indirect Cost: ¥2,100,000)
|
Keywords | 固体高分子型燃料電池 / 電極触媒 / プロトン伝導体 / 白金 / ポリベンズイミダゾール / 高分子電解質 / 表面改質 / カーボン担体 / プロトン電解質 / 炭素担体 / ナノカーボン / 燃料電池 / ナノチューブ / 高分子合成 / 低白金化 / ナノチューブ・フラーレン |
Outline of Final Research Achievements |
Development of the polymer electrolyte fuel cell (PEFC) operative under wider temperature as well as the lower humidity condition was carried out. In this project, new polymer electrolyte membrane based on polybenzimidazole (PBI) was developed. The PBI was grafted with the sulfonic acid side chains. We found that the increase of the graft distance increase the proton conductivity due to the effective hopping of the proton, which is promising for the high temperature and low humidity operation. The polymer was introduced into the electrocatalyst by taking advantage of the strong adsorption onto the carbon surface. The PBI grafted with sulfonic acid was coated onto the carbon black to offer the proton-conductive carbon black, which was new concept. After loading Pt on the new proton-conductive carbon black, we successfully fabricated the all-PBI based single cell. We found the cell was promising for the next generation operation.
|
Academic Significance and Societal Importance of the Research Achievements |
燃料電池車の市販も開始され、固体高分子形燃料電池の重要性が高まっている。現在、普及に向けてさらなる「低コスト化」と「高活性化」が急務とされ、そのために、加湿器が不要となる「低湿度運転」と高活性化が見込める「高温化」が求められている。しかし、現行の高分子電解質は高温・低加湿での伝導度低下が大きいために、代替材料が求められていた。さらに現行炭素担体も高温での劣化が大きいことが知られているために、この両者を解決する必要があった。本研究では、高温で伝導度の高いプロトン電解質を開発し、炭素担体もカーボンナノチューブの使用を可能にし、材料側から次世代燃料電池の実現を可能にした点において意義が大きい。
|
Report
(4 results)
Research Products
(32 results)