• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Around the Broadhurst-Kreimer conjecture

Research Project

Project/Area Number 16H07115
Research Category

Grant-in-Aid for Research Activity Start-up

Allocation TypeSingle-year Grants
Research Field Algebra
Research InstitutionAichi Prefectural University

Principal Investigator

TASAKA Koji  愛知県立大学, 情報科学部, 助教 (30780762)

Project Period (FY) 2016-08-26 – 2018-03-31
Project Status Completed (Fiscal Year 2017)
Budget Amount *help
¥2,990,000 (Direct Cost: ¥2,300,000、Indirect Cost: ¥690,000)
Fiscal Year 2017: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
Fiscal Year 2016: ¥1,560,000 (Direct Cost: ¥1,200,000、Indirect Cost: ¥360,000)
Keywords多重ゼータ値 / モジュラー形式 / Broadhurst-Kreimer予想 / 整数論 / モチビック多重ゼータ値 / 複シャッフル関係式
Outline of Final Research Achievements

A goal of this project is to reveal the Broadhurst-Kreimer conjecture, which describes certain relationships between multiple zeta values and modular forms. For this, we focused on multiple zeta values of lower depths, and found explicit connections with modular forms. This is a joint work with Ding Ma from Duke University. Also, I observed an interesting connection between modular forms and multiple Eisenstein series which is a common generalization of multiple zeta values and modular forms.

Report

(3 results)
  • 2017 Annual Research Report   Final Research Report ( PDF )
  • 2016 Annual Research Report
  • Research Products

    (8 results)

All 2017 2016 Other

All Journal Article (1 results) (of which Peer Reviewed: 1 results) Presentation (5 results) (of which Int'l Joint Research: 2 results,  Invited: 5 results) Remarks (1 results) Funded Workshop (1 results)

  • [Journal Article] Evaluation of Tornheim's type of double series2017

    • Author(s)
      S. Kadota, T. Okamoto, K. Tasaka
    • Journal Title

      Illinois Journal of Mathematics

      Volume: 61 Pages: 171-186

    • Related Report
      2017 Annual Research Report
    • Peer Reviewed
  • [Presentation] 2重ゼータ値の周期多項式関係式の精密化2017

    • Author(s)
      田坂浩二
    • Organizer
      九州代数的整数論
    • Place of Presentation
      九州大学 (福岡市, 福岡)
    • Year and Date
      2017-03-08
    • Related Report
      2016 Annual Research Report
    • Invited
  • [Presentation] カスプ形式と2重ゼータ値について2017

    • Author(s)
      田坂浩二
    • Organizer
      第15回量子情報ミニワークショップ
    • Place of Presentation
      浜名湖弁天島ファミリーホテル開春楼 (浜松市,静岡)
    • Year and Date
      2017-01-20
    • Related Report
      2016 Annual Research Report
    • Invited
  • [Presentation] Period polynomial relations between double zeta values revisited2016

    • Author(s)
      Koji Tasaka
    • Organizer
      Modular Forms and Period Integrals
    • Place of Presentation
      University of Tokyo (Komaba, Tokyo)
    • Year and Date
      2016-09-12
    • Related Report
      2016 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] A refinement of period polynomial relations between double zeta values2016

    • Author(s)
      Koji Tasaka
    • Organizer
      8th international symposium on natural science
    • Place of Presentation
      Incheon International University (Korea)
    • Related Report
      2016 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] ルート系のゼータ関数の特殊値について2016

    • Author(s)
      田坂浩二
    • Organizer
      首都大学整数論セミナー
    • Place of Presentation
      首都大学東京 (八王子市,東京)
    • Related Report
      2016 Annual Research Report
    • Invited
  • [Remarks] 田坂浩二のホームページ

    • URL

      http://www.ist.aichi-pu.ac.jp/~tasaka/

    • Related Report
      2017 Annual Research Report
  • [Funded Workshop] 3rd Japanese-German Number Theory Workshop2017

    • Related Report
      2017 Annual Research Report

URL: 

Published: 2016-09-02   Modified: 2019-03-29  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi