• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

結晶基底を用いた Newton-Okounkov 凸体の研究

Research Project

Project/Area Number 16J00420
Research Category

Grant-in-Aid for JSPS Fellows

Allocation TypeSingle-year Grants
Section国内
Research Field Algebra
Research InstitutionTokyo Institute of Technology

Principal Investigator

藤田 直樹  東京工業大学, 理学院, 特別研究員(PD)

Project Period (FY) 2016-04-22 – 2019-03-31
Project Status Completed (Fiscal Year 2018)
Budget Amount *help
¥2,500,000 (Direct Cost: ¥2,500,000)
Fiscal Year 2018: ¥800,000 (Direct Cost: ¥800,000)
Fiscal Year 2017: ¥800,000 (Direct Cost: ¥800,000)
Fiscal Year 2016: ¥900,000 (Direct Cost: ¥900,000)
KeywordsNewton-Okounkov 凸体 / 中島-Zelevinsky 多面体 / Gorenstein Fano トーリック多様体 / 一般化ストリング多面体 / テンソル積表現 / シューベルト多様体 / 結晶基底の多面体表示 / 差分作用素 / ヘッセンバーグ多様体 / Newton-Okounkov凸体 / 結晶基底 / ストリング多面体
Outline of Annual Research Achievements

本研究の目的は Newton-Okounkov 凸体と結晶基底の関係を理解し, 幾何への応用を与えることである. 報告者は昨年度の研究において, Newton-Okounkov 凸体の具体例である 中島-Zelevinsky 多面体の特別なクラスが Kiritchenko による多面体に対する Demazure 作用素を用いて構成できることを見出した. 今年度はこの結果を 中島-Zelevinsky 多面体に対応するトーリック多様体の研究へ応用した. 具体的には上記の作用素を用いて構成できる 中島-Zelevinsky 多面体に対して, 対応するトーリック多様体が最高ウェイトの取り方に依らないこと, および Gorenstein Fano であることを証明した.
シューベルト多様体の特異点解消の一つである Bott-Samelson 多様体が持つ対称性は一般化 Demazure 加群と呼ばれる加群に反映されている. この加群に対する結晶基底を一般化 Demazure 結晶という. 報告者は以前の研究において, Bott-Samelson 多様体のある付値に関する Newton-Okounkov 凸体が一般化 Demazure 結晶のあるパラメトリゼーションから作られる多面体 (一般化ストリング多面体) と一致していることを見出した. 今年度は IBS-CGP の Eunjeong Lee 氏および KAIST の Dong Youp Suh 教授との共同研究において, 一般化 Demazure 加群の特別なクラスを考察し, このクラスに属する加群の既約分解を Newton-Okounkov 凸体を用いて記述する公式を導出した. このクラスには有限個の既約表現のテンソル積が含まれており, テンソル積表現の既約分解に現れる既約表現の重複度をある多面体の格子点の数え上げとして計算する方法を与えている.
Eunjeong Lee 氏および Dong Youp Suh 教授との共同研究のきっかけとなった一般化ストリング多面体に関する研究をまとめた論文が Journal of Algebra から出版された.

Research Progress Status

平成30年度が最終年度であるため、記入しない。

Strategy for Future Research Activity

平成30年度が最終年度であるため、記入しない。

Report

(3 results)
  • 2018 Annual Research Report
  • 2017 Annual Research Report
  • 2016 Annual Research Report
  • Research Products

    (28 results)

All 2019 2018 2017 2016 Other

All Int'l Joint Research (6 results) Journal Article (5 results) (of which Int'l Joint Research: 1 results,  Peer Reviewed: 5 results,  Acknowledgement Compliant: 1 results) Presentation (17 results) (of which Int'l Joint Research: 8 results,  Invited: 7 results)

  • [Int'l Joint Research] Fudan University(中国)

    • Related Report
      2017 Annual Research Report
  • [Int'l Joint Research] KAIST(韓国)

    • Related Report
      2017 Annual Research Report
  • [Int'l Joint Research] Unidad Academica de Matematicas(メキシコ)

    • Related Report
      2016 Annual Research Report
  • [Int'l Joint Research] Yale University(米国)

    • Related Report
      2016 Annual Research Report
  • [Int'l Joint Research] University of Warsaw(ポーランド)

    • Related Report
      2016 Annual Research Report
  • [Int'l Joint Research] Georg-August-Universitat Gottingen(ドイツ)

    • Related Report
      2016 Annual Research Report
  • [Journal Article] Newton-Okounkov bodies for Bott-Samelson varieties and string polytopes for generalized Demazure modules2018

    • Author(s)
      Naoki Fujita
    • Journal Title

      Journal of Algebra

      Volume: 515 Pages: 408-447

    • DOI

      10.1016/j.jalgebra.2018.08.019

    • Related Report
      2018 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Folding procedure for Newton-Okounkov polytopes of Schubert varieties2018

    • Author(s)
      Naoki Fujita
    • Journal Title

      Communications in Algebra

      Volume: 46 Issue: 6 Pages: 2666-2692

    • DOI

      10.1080/00927872.2017.1392538

    • Related Report
      2017 Annual Research Report
    • Peer Reviewed
  • [Journal Article] A comparison of Newton-Okounkov polytopes of Schubert varieties2017

    • Author(s)
      Naoki Fujita, Hironori Oya
    • Journal Title

      Journal of the London Mathematical Society (2)

      Volume: 96 Issue: 1 Pages: 201-227

    • DOI

      10.1112/jlms.12059

    • Related Report
      2017 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Khovanskii bases of Cox-Nagata rings and tropical geometry2017

    • Author(s)
      Martha Bernal Guillen, Daniel Corey, Maria Donten-Bury, Naoki Fujita, Georg Merz
    • Journal Title

      Fields Institute Communications

      Volume: 80 Pages: 159-179

    • DOI

      10.1007/978-1-4939-7486-3_8

    • ISBN
      9781493974856, 9781493974863
    • Related Report
      2017 Annual Research Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] Newton-Okounkov convex bodies of Schubert varieties and polyhedral realizations of crystal bases2017

    • Author(s)
      Naoki Fujita, Satoshi Naito
    • Journal Title

      Mathematische Zeitschrift

      Volume: 285 Issue: 1-2 Pages: 325-352

    • DOI

      10.1007/s00209-016-1709-7

    • Related Report
      2016 Annual Research Report
    • Peer Reviewed / Acknowledgement Compliant
  • [Presentation] Tensor product representations from Newton-Okounkov bodies2019

    • Author(s)
      藤田 直樹
    • Organizer
      第15回数学総合若手研究集会
    • Related Report
      2018 Annual Research Report
  • [Presentation] Geometry of regular Hessenberg varieties and their families2018

    • Author(s)
      藤田 直樹
    • Organizer
      Algebraic Lie Theory and Representation Theory 2018
    • Related Report
      2018 Annual Research Report
  • [Presentation] Geometric and representation-theoretic aspects of flag Bott-Samelson varieties2018

    • Author(s)
      藤田 直樹
    • Organizer
      変換群論における幾何・代数・組み合わせ論
    • Related Report
      2018 Annual Research Report
    • Invited
  • [Presentation] Divided difference operators on polytopes and polyhedral realizations of crystal bases2018

    • Author(s)
      藤田 直樹
    • Organizer
      組合せ論的表現論の諸相
    • Related Report
      2018 Annual Research Report
  • [Presentation] Newton-Okounkov bodies, generalized string polytopes and tensor product multiplicities2018

    • Author(s)
      Naoki Fujita
    • Organizer
      Conference on Algebraic Representation Theory
    • Related Report
      2018 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] Algebro-geometric aspects of regular Hessenberg varieties and their families2018

    • Author(s)
      藤田 直樹
    • Organizer
      Hessenberg 集会 2018 in Osaka
    • Related Report
      2018 Annual Research Report
    • Invited
  • [Presentation] Nakashima-Zelevinsky polytopes from convex-geometric Demazure operators2018

    • Author(s)
      藤田 直樹
    • Organizer
      南大阪代数セミナー
    • Related Report
      2018 Annual Research Report
    • Invited
  • [Presentation] Folding procedure for Newton-Okounkov polytopes of flag varieties2018

    • Author(s)
      藤田 直樹
    • Organizer
      第14回数学総合若手研究集会 (北海道大学)
    • Related Report
      2017 Annual Research Report
  • [Presentation] Newton-Okounkov polytopes and representation theory I, II, III (連続講演)2018

    • Author(s)
      Naoki Fujita
    • Organizer
      Seminar (IBS Center for Geometry and Physics)
    • Related Report
      2017 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] Polyhedral realizations of crystal bases and convex-geometric divided difference operators2017

    • Author(s)
      Naoki Fujita
    • Organizer
      Algebraic Analysis and Representation Theory (RIMS)
    • Related Report
      2017 Annual Research Report
    • Int'l Joint Research
  • [Presentation] Polyhedral realizations of crystal bases and perfect bases with positivity properties2017

    • Author(s)
      藤田 直樹
    • Organizer
      表現論と組合せ論 (RIMS)
    • Related Report
      2017 Annual Research Report
  • [Presentation] Convex-geometric divided difference operators and crystal bases2017

    • Author(s)
      Naoki Fujita
    • Organizer
      International Festival in Schubert Calculus (Sun Yat-sen University)
    • Related Report
      2017 Annual Research Report
    • Int'l Joint Research
  • [Presentation] Newton-Okounkov polytopes of flag varieties of classical types2016

    • Author(s)
      Naoki Fujita
    • Organizer
      The 4th Korea Toric Topology Winter Workshop
    • Place of Presentation
      Unipark of Jeju National University (Jeju Island, Korea)
    • Year and Date
      2016-12-26
    • Related Report
      2016 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] Newton-Okounkov polytopes of Schubert varieties and perfect bases with positivity properties2016

    • Author(s)
      Naoki Fujita
    • Organizer
      Conference on Algebraic Representation Theory 2016
    • Place of Presentation
      Harbin Institute of Technology (Shenzhen, China)
    • Year and Date
      2016-12-01
    • Related Report
      2016 Annual Research Report
    • Int'l Joint Research
  • [Presentation] Newton-Okounkov polytopes of Schubert varieties and folding method2016

    • Author(s)
      Naoki Fujita
    • Organizer
      Geometry & Topology Seminar
    • Place of Presentation
      McMaster University (Hamilton, Canada)
    • Year and Date
      2016-09-23
    • Related Report
      2016 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] Newton-Okounkov polytopes of Schubert varieties and polyhedral realizations of crystal bases2016

    • Author(s)
      Naoki Fujita
    • Organizer
      Introductory Workshop in “Major Thematic Program on Combinatorial Algebraic Geometry”
    • Place of Presentation
      Fields Institute (Toronto, Canada)
    • Year and Date
      2016-08-15
    • Related Report
      2016 Annual Research Report
    • Int'l Joint Research
  • [Presentation] Comparison between Newton-Okounkov polytopes of Schubert varieties2016

    • Author(s)
      Naoki Fujita
    • Organizer
      Algebraic Lie Theory and Representation Theory 2016
    • Place of Presentation
      菅平高原 プチホテル・ゾンタック(長野県上田市)
    • Year and Date
      2016-06-09
    • Related Report
      2016 Annual Research Report

URL: 

Published: 2016-05-17   Modified: 2024-03-26  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi