Non-Equilibrium Statistical Mechanics with Topological Constraints: Thermodynamics and Entropy Production of Self-Organized Turbulence
Project/Area Number |
16J01486
|
Research Category |
Grant-in-Aid for JSPS Fellows
|
Allocation Type | Single-year Grants |
Section | 国内 |
Research Field |
Plasma science
|
Research Institution | The University of Tokyo |
Principal Investigator |
佐藤 直木 東京大学, 新領域創成科学研究科, 特別研究員(PD)
|
Project Period (FY) |
2016-04-22 – 2018-03-31
|
Project Status |
Completed (Fiscal Year 2017)
|
Budget Amount *help |
¥1,700,000 (Direct Cost: ¥1,700,000)
Fiscal Year 2017: ¥800,000 (Direct Cost: ¥800,000)
Fiscal Year 2016: ¥900,000 (Direct Cost: ¥900,000)
|
Keywords | Conservative Dynamics / Topological Constraints / Diffusion / Entropy Measure / Invariant Measure / Helicity / Non-Integrability / Non-Elliptic PDE / Self-Organization / Hamiltonian Mechanics / Almost Poisson Algebra / Jacobi Identity |
Outline of Annual Research Achievements |
1、The theory developed in the present study was summarized in the Phd thesis with title "Generalized conservative dynamics in topologically constrained phase space: macro-hierarchy, entropy production, and self-organization". In this work a statistical theory of conservative systems subject to topological constraints is formulated, and the relationship between constraints and entropy measure is clarified by derivation of the H-theorem. 2、The theory was applied to study plasma equilibria resulting by diffusion in different magnetic geometries: a straight magnetic field and a dipole magnetic field. Particle simulations confirmed the theoretical prediction that diffusion in a dipole magnetic field generate density gradients. 3、In the study of diffusion processes subject to non-integrable constraints, it was found that there exists an additional mechanism to generate organized structures that does not arise when the constraints are integrable. Such self-organization is driven by a distortion of space caused by a geometrical charge, the "field charge". This quantity measures the departure of the operator (the antisymmetric matrix that generates the dynamics together with the Hamiltonian) from a Beltrami field. 4、It was found that the stationary form of the diffusion equation describing systems affected by topological constraints is a non-elliptic second order partial differential equation. Specific conditions for existence and uniqueness of solution were obtained by using the integrability properties of the constraints.
|
Research Progress Status |
29年度が最終年度であるため、記入しない。
|
Strategy for Future Research Activity |
29年度が最終年度であるため、記入しない。
|
Report
(2 results)
Research Products
(16 results)