• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Construction of practical algorithms for nonconvex global optimization

Research Project

Project/Area Number 16K00028
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Research Field Mathematical informatics
Research InstitutionUniversity of Tsukuba

Principal Investigator

Kuno Takahito  筑波大学, システム情報系, 教授 (00205113)

Co-Investigator(Kenkyū-buntansha) 吉瀬 章子  筑波大学, システム情報系, 教授 (50234472)
Research Collaborator CHIBA Ryusuke  
TSURUDA Takahiro  
IMAIZUMI Hajime  
WATANABE Masahiro  
Project Period (FY) 2016-04-01 – 2019-03-31
Project Status Completed (Fiscal Year 2018)
Budget Amount *help
¥4,420,000 (Direct Cost: ¥3,400,000、Indirect Cost: ¥1,020,000)
Fiscal Year 2018: ¥1,560,000 (Direct Cost: ¥1,200,000、Indirect Cost: ¥360,000)
Fiscal Year 2017: ¥1,560,000 (Direct Cost: ¥1,200,000、Indirect Cost: ¥360,000)
Fiscal Year 2016: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Keywords数理最適化 / 大域的最適化 / 非線形最適化 / 非凸最小化 / アルゴリズム / 非凸計画問題 / 確定的アルゴリズム / 分枝限定法 / 最適化アルゴリズム / 非凸最適化 / 凹最小化問題 / 数理計画法 / 非線形計画法
Outline of Final Research Achievements

In order to find a globally optimal solution to nonlinear concave minimization problems, we extended the ω-subdivision rule for the simplicial branch-and-bound algorithm and allowed the center of subdivision to be out of each simplex. We proved the convergence of this modified simplicial branch-and-bound algorithm to a globally optimal solution, and after programming, compared it with the usual algorithm. The numerical results indicated that our algorithm improves the empirical performance considerably.
In our algorithm, the simplex algorithm solves linear programming problems iteratively. We showed that Kitahara-Mizuno's bound on the number of iterations required by the simplex algorithm is theoretically hard to calculate, and instead computed an upper bound on their bound for some benchmark problems actually on a computer.

Academic Significance and Societal Importance of the Research Achievements

凸最小化問題に対する経験的に効率の良いアルゴリズムはこれまで数多く提案されているが,凸性を満たさない問題に対しては未だにおもちゃサイズの問題を解くのも難しい.しかし,昨今では機械学習などで凸性を満たさない最適化問題の効率のよいアルゴリズムが求められており,提案した拡張ω細分規則を用いた単体的分枝限定法はその要求に十分答えることができる.また,シンプレックス法の反復回数に関して,北原・水野の上界値は最新で有望なものと注目を集めているが,他の上界値にはない2つのパラメータを含んでいる.その値の算出が困難であることを理論的に証明したことは,この上界値の有用性を左右する重要な結果である.

Report

(4 results)
  • 2018 Annual Research Report   Final Research Report ( PDF )
  • 2017 Research-status Report
  • 2016 Research-status Report
  • Research Products

    (10 results)

All 2018 2017 2016 Other

All Int'l Joint Research (1 results) Journal Article (5 results) (of which Int'l Joint Research: 1 results,  Peer Reviewed: 3 results,  Open Access: 2 results,  Acknowledgement Compliant: 1 results) Presentation (4 results)

  • [Int'l Joint Research] PTIT/Haiphong University(ベトナム)

    • Related Report
      2017 Research-status Report
  • [Journal Article] Computing Kitahara-Mizuno’s bound on the number of basic feasible solutions generated with the simplex algorithm2018

    • Author(s)
      Kuno Takahito、Sano Yoshio、Tsuruda Takahiro
    • Journal Title

      Optimization Letters

      Volume: 12 Issue: 5 Pages: 933-943

    • DOI

      10.1007/s11590-018-1276-4

    • NAID

      120007133953

    • Related Report
      2018 Annual Research Report
    • Peer Reviewed
  • [Journal Article] A modified simplicial algorithm for convex maximization based on an extension of ω-subdivision2018

    • Author(s)
      Kuno Takahito
    • Journal Title

      Journal of Global Optimization

      Volume: 71 Issue: 2 Pages: 297-311

    • DOI

      10.1007/s10898-018-0619-0

    • NAID

      120007133901

    • Related Report
      2018 Annual Research Report 2017 Research-status Report
    • Peer Reviewed
  • [Journal Article] A polynomial-time approximation scheme for monotonic optimization over the unit simplex2018

    • Author(s)
      Chiba Ryusuke, Kuno Takahito, Sano Yoshio
    • Journal Title

      京都大学数理解析研究所講究録

      Volume: 2069 Pages: 74-83

    • Related Report
      2018 Annual Research Report
    • Open Access
  • [Journal Article] Convergence theorems for variational inequalities on the solution set of Ky Fan inequalities2017

    • Author(s)
      Phan Ngoc Anh, Tran T.H.Anh, and Takahito Kuno
    • Journal Title

      Acta Mathematica Vietnamica

      Volume: - Issue: 4 Pages: 1-15

    • DOI

      10.1007/s40306-017-0226-z

    • Related Report
      2017 Research-status Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] On an extension of the ω-subdivision rule used in the simplicial algorithm for convex maximization2017

    • Author(s)
      T.Kuno
    • Journal Title

      数理解析研究所講究録

      Volume: 印刷中

    • Related Report
      2016 Research-status Report
    • Open Access / Acknowledgement Compliant
  • [Presentation] 逆凸条件付き線形計画問題に関する研究2018

    • Author(s)
      今泉肇,久野誉人,佐野良夫
    • Organizer
      日本OR学会2018年周期研究発表会
    • Related Report
      2018 Annual Research Report
  • [Presentation] An algorithm for packing equal circles in a square2018

    • Author(s)
      渡邊雅弘,久野誉人,佐野良夫
    • Organizer
      京都大学数理解析研究所共同研究「高度情報化社会に向けた数理最適化の新潮流」
    • Related Report
      2018 Annual Research Report
  • [Presentation] 単位単体上での単調最適化に対する多項式時間近似スキーム2017

    • Author(s)
      千葉竜介,久野誉人,佐野良夫
    • Organizer
      京都大学数理解析研究所研究集会「数理最適化の発展:モデル化とアルゴリズム」
    • Related Report
      2017 Research-status Report
  • [Presentation] 拡張ω細分規則を用いた単体アルゴリズムについて2016

    • Author(s)
      久野誉人
    • Organizer
      数理解析研究所研究集会「最適化技法の最先端と今後の展開」
    • Place of Presentation
      京都大学数理解析研究所(京都府京都市)
    • Year and Date
      2016-08-25
    • Related Report
      2016 Research-status Report

URL: 

Published: 2016-04-21   Modified: 2020-03-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi