• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Causal discovery in the presence of hidden confounding variables for data with heterogeneity

Research Project

Project/Area Number 16K00045
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Research Field Statistical science
Research InstitutionShiga University

Principal Investigator

Shimizu Shohei  滋賀大学, データサイエンス学部, 教授 (10509871)

Project Period (FY) 2016-04-01 – 2020-03-31
Project Status Completed (Fiscal Year 2019)
Budget Amount *help
¥4,680,000 (Direct Cost: ¥3,600,000、Indirect Cost: ¥1,080,000)
Fiscal Year 2019: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2018: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Fiscal Year 2017: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2016: ¥1,950,000 (Direct Cost: ¥1,500,000、Indirect Cost: ¥450,000)
Keywords因果探索 / 因果構造 / 観察データ / 未観測共通原因 / 異質性 / 統計的因果推論 / 構造的因果モデル / 因果構造探索
Outline of Final Research Achievements

LiNGAM model handles only continuous variables. To represent heterogeneity, we tried to extend the LiNGAM model so that it can handle discrete variables. We developed a model assuming that the relationship between discrete variables and continuous variables is a non-cyclic directed graph. We also considered combining a causal model with a machine learning model that can handle discrete variables. To deal with unobserved common causes, we extended instrumental variable methods by making use of non-Gaussianity and independence. In addition, a method to infer where the unobserved common cause is likely to be is proposed within the framework of the LiNGAM model.

Academic Significance and Societal Importance of the Research Achievements

LiNGAMモデルは因果探索の標準的な方法の一つとして注目を集めているが, 離散変数が混在する状況を扱えるようにすることでさらに応用範囲を広げることができた。また機械学習モデルと因果モデルを組み合わせたモデルについては,制御への応用が期待される。操作変数は広く用いられているが,非ガウス性と独立性を利用した操作変数法については,従来よりも多くの情報を抽出することができることがわかった。未観測共通原因がどこにありそうかを推測する方法については, 条件付き独立性を用いる因果関係推測法の枠組みでは, そのような方法が提案されているが, LiNGAMモデルの枠組みでは対応する方法がなかった。

Report

(5 results)
  • 2019 Annual Research Report   Final Research Report ( PDF )
  • 2018 Research-status Report
  • 2017 Research-status Report
  • 2016 Research-status Report
  • Research Products

    (35 results)

All 2020 2019 2018 2017 2016 Other

All Int'l Joint Research (5 results) Journal Article (12 results) (of which Int'l Joint Research: 6 results,  Peer Reviewed: 12 results,  Open Access: 5 results) Presentation (13 results) (of which Int'l Joint Research: 5 results,  Invited: 11 results) Book (2 results) Remarks (3 results)

  • [Int'l Joint Research] Hunan University of Commerce(中国)

    • Related Report
      2019 Annual Research Report
  • [Int'l Joint Research] The University of Auckland(ニュージーランド)

    • Related Report
      2019 Annual Research Report
  • [Int'l Joint Research] Shanghai University(中国)

    • Related Report
      2018 Research-status Report
  • [Int'l Joint Research] Max Planck institute(ドイツ)

    • Related Report
      2018 Research-status Report
  • [Int'l Joint Research] University College London(United Kingdom)

    • Related Report
      2017 Research-status Report
  • [Journal Article] RCD: Repetitive causal discovery of linear non-Gaussian acyclic models with latent confounders2020

    • Author(s)
      T. N. Maeda, S Shimizu
    • Journal Title

      Proc. 23rd International Conference on Artificial Intelligence and Statistics (AISTATS2020)

      Volume: 1 Pages: 1-9

    • Related Report
      2019 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] Multi-Modality Behavioral Influence Analysis for Personalized Recommendations in Health Social Media Environment2019

    • Author(s)
      Zhou Xiaokang、Liang Wei、Wang Kevin I-Kai、Shimizu Shohei
    • Journal Title

      IEEE Transactions on Computational Social Systems

      Volume: 6 Issue: 5 Pages: 888-897

    • DOI

      10.1109/tcss.2019.2918285

    • Related Report
      2019 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Analysis of cause-effect inference by comparing regression errors2019

    • Author(s)
      Blobaum Patrick、Janzing Dominik、Washio Takashi、Shimizu Shohei、Scholkopf Bernhard
    • Journal Title

      PeerJ Computer Science

      Volume: 5 Pages: e169-e169

    • DOI

      10.7717/peerj-cs.169

    • Related Report
      2018 Research-status Report
    • Peer Reviewed / Open Access / Int'l Joint Research
  • [Journal Article] Personalization Recommendation Algorithm Based on Trust Correlation Degree and Matrix Factorization2019

    • Author(s)
      Li Weimin、Zhou Xiaokang、Shimizu Shohei、Xin Mingjun、Jiang Jiulei、Gao Honghao、Jin Qun
    • Journal Title

      IEEE Access

      Volume: 7 Pages: 45451-45459

    • DOI

      10.1109/access.2018.2885084

    • Related Report
      2018 Research-status Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] A Novel Personalized Recommendation Algorithm Based on Trust Relevancy Degree2018

    • Author(s)
      Li Weimin、Zhu Heng、Zhou Xiaokang、Shimizu Shohei、Xin Mingjun、Jin Qun
    • Journal Title

      Proc. DASC/PiCom/DataCom/CyberSciTec2018

      Volume: 1 Pages: 418-422

    • DOI

      10.1109/dasc/picom/datacom/cyberscitec.2018.00084

    • Related Report
      2018 Research-status Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] Cause-Effect Inference by Comparing Regression Errors2018

    • Author(s)
      Patrick Bloebaum, Dominik Janzing, Takashi Washio, Shohei Shimizu, Bernhard Schoelkopf
    • Journal Title

      Proceedings of the Twenty-First International Conference on Artificial Intelligence and Statistics (AISTATS2018), PMLR

      Volume: 84 Pages: 900-909

    • Related Report
      2018 Research-status Report
    • Peer Reviewed / Open Access / Int'l Joint Research
  • [Journal Article] Non-Gaussian Methods for Causal Structure Learning2018

    • Author(s)
      Shimizu Shohei
    • Journal Title

      Prevention Science

      Volume: 20 Issue: 3 Pages: 431-441

    • DOI

      10.1007/s11121-018-0901-x

    • Related Report
      2018 Research-status Report
    • Peer Reviewed / Open Access
  • [Journal Article] Learning instrumental variables with structural and non-Gaussianity assumptions2017

    • Author(s)
      Ricard Silva, Shohei Shimizu
    • Journal Title

      Journal of Machine Learning Research

      Volume: 18 Pages: 1-49

    • Related Report
      2017 Research-status Report
    • Peer Reviewed / Open Access / Int'l Joint Research
  • [Journal Article] Error asymmetry in causal and anticausal regression2017

    • Author(s)
      Blobaum Patrick、Washio Takashi、Shimizu Shohei
    • Journal Title

      Behaviormetrika

      Volume: 44 Issue: 2 Pages: 491-512

    • DOI

      10.1007/s41237-017-0022-z

    • Related Report
      2017 Research-status Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] A novel principle for causal inference in data with small error variance2017

    • Author(s)
      Blobaum Patrick、Shimizu Shohei、Washio Takashi
    • Journal Title

      n Proc. 25 th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning (ESANN2017),

      Volume: 1 Pages: 347-352

    • Related Report
      2017 Research-status Report
    • Peer Reviewed
  • [Journal Article] Estimation of interventional effects of features on prediction2017

    • Author(s)
      Blobaum Patrick、Shimizu Shohei
    • Journal Title

      Proc. 2017 IEEE Machine Learning for Signal Processing Workshop (MLSP2017)

      Volume: 1 Pages: 1-6

    • Related Report
      2017 Research-status Report
    • Peer Reviewed
  • [Journal Article] Non-Gaussian structural equation models for causal discovery2016

    • Author(s)
      S. Shimizu
    • Journal Title

      Statistics and Causality: Methods for Applied Empirical Research

      Volume: - Pages: 153-184

    • Related Report
      2016 Research-status Report
    • Peer Reviewed
  • [Presentation] Causal discovery based on non-Gaussianity of data and its applications2019

    • Author(s)
      Shohei SHIMIZU
    • Organizer
      日本行動計量学会 第47回大会
    • Related Report
      2019 Annual Research Report
    • Invited
  • [Presentation] 統計的因果探索に基づく遺伝子制御ネットワークの推定2019

    • Author(s)
      井元佑介, 平岡裕章,清水昌平,前田高志ニコラス,小島洋児,斎藤通紀
    • Organizer
      応用数学合同研究集会2019
    • Related Report
      2019 Annual Research Report
  • [Presentation] Causal discovery, prediction, and control2018

    • Author(s)
      Shohei Shimizu
    • Organizer
      Causal Modeling and Machine Learning (CaMaL) Workshop, Guangzhou, China.
    • Related Report
      2018 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Causal discovery, prediction mechanisms, and control2018

    • Author(s)
      Shohei Shimizu
    • Organizer
      he 5th meeting of the Institute of Mathematical Statistics (IMS) meeting series, the IMS Asia Pacific Rim Meeting (IMS-APRM), Singapore
    • Related Report
      2018 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] 因果探索、予測、そして制御2018

    • Author(s)
      清水昌平
    • Organizer
      2018年度 統計関連学会連合大会, 東京. 応用統計学会企画セッション: 「統計的因果推論―基本的なアイデアから最近の発展まで―」
    • Related Report
      2018 Research-status Report
    • Invited
  • [Presentation] 因果構造探索の基本2017

    • Author(s)
      清水昌平
    • Organizer
      研究集会: 因果推論の基礎
    • Place of Presentation
      統計数理研究所 (東京)
    • Year and Date
      2017-02-17
    • Related Report
      2016 Research-status Report
    • Invited
  • [Presentation] 統計的因果推論への招待 - 因果構造探索を中心に -2017

    • Author(s)
      清水 昌平
    • Organizer
      システム制御情報学会・計測自動制御学会 チュートリアル講座2017
    • Related Report
      2017 Research-status Report
    • Invited
  • [Presentation] Causal discovery and prediction mechanisms2017

    • Author(s)
      Shohei Shimizu
    • Organizer
      France/Japan Machine Learning Workshop
    • Related Report
      2017 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] 因果探索への招待2017

    • Author(s)
      清水 昌平
    • Organizer
      電子情報通信学会IA(インターネットアーキテクチャ)/IN(情報ネットワーク)併催研究会
    • Related Report
      2017 Research-status Report
    • Invited
  • [Presentation] 因果探索入門2017

    • Author(s)
      清水 昌平
    • Organizer
      日本行動計量学会 第20回春の合宿セミナー
    • Related Report
      2017 Research-status Report
    • Invited
  • [Presentation] 関係流動性と消費者自民族中心主義の因果構造分析~非ガウス性を使った因果推論2016

    • Author(s)
      芳賀麻誉美, 清水昌平
    • Organizer
      日本マーケティング・サイエンス学会 第100回研究大会
    • Place of Presentation
      ホテル阪急エキスポパーク+大阪大学中之島センター (大阪)
    • Year and Date
      2016-12-27
    • Related Report
      2016 Research-status Report
  • [Presentation] A non-Gaussian model for causal discovery in the presence of hidden common causes2016

    • Author(s)
      S. Shimizu
    • Organizer
      A non-Gaussian model for causal discovery in the presence of hidden common causes
    • Place of Presentation
      Munich (Germany)
    • Year and Date
      2016-05-23
    • Related Report
      2016 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] A non-Gaussian approach for causal structure learning in the presence of hidden common causes2016

    • Author(s)
      S. Shimizu
    • Organizer
      CRM Workshop: Statistical Causal Inference and its Applications to Genetics
    • Place of Presentation
      Montreal (Canada)
    • Related Report
      2016 Research-status Report
    • Int'l Joint Research / Invited
  • [Book] 統計的因果探索2017

    • Author(s)
      清水 昌平
    • Total Pages
      192
    • Publisher
      講談社
    • ISBN
      9784061529250
    • Related Report
      2017 Research-status Report
  • [Book] 確率的グラフィ カルモデル2016

    • Author(s)
      黒木学, 清水昌平, 湊真一, 石畠正和, 樺島祥介, 田中和之, 本村陽一, 玉田嘉紀, 鈴木譲, 植野真臣
    • Total Pages
      292
    • Publisher
      共立出版
    • Related Report
      2016 Research-status Report
  • [Remarks] https://sites.google.com/site/sshimizu06/

    • Related Report
      2018 Research-status Report
  • [Remarks] 清水昌平

    • URL

      https://sites.google.com/site/sshimizu06/indexj

    • Related Report
      2017 Research-status Report
  • [Remarks]

    • URL

      https://sites.google.com/site/sshimizu06/

    • Related Report
      2016 Research-status Report

URL: 

Published: 2016-04-21   Modified: 2021-02-19  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi