• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Next generation Monte Carlo methods based on reversible proposal Metropolis-Hastings algorithms

Research Project

Project/Area Number 16K00046
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Research Field Statistical science
Research InstitutionOsaka University

Principal Investigator

Kamatani Kengo  大阪大学, 基礎工学研究科, 准教授 (00569767)

Project Period (FY) 2016-04-01 – 2020-03-31
Project Status Completed (Fiscal Year 2019)
Budget Amount *help
¥4,550,000 (Direct Cost: ¥3,500,000、Indirect Cost: ¥1,050,000)
Fiscal Year 2019: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2018: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2017: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Fiscal Year 2016: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Keywordsベイズ統計学 / マルコフ連鎖 / モンテカルロ法 / 確率過程 / Monte Carlo / Markov chain / Stochastic process / Bayesian analysis / 多変量解析 / フィッシャー情報量 / 時系列解析 / 統計数学 / 確率論
Outline of Final Research Achievements

I worked on Monte Carlo methods for the integral evaluations that appear in Bayesian statistics. We focused on the simplest class of Markov kernels for Monte Carlo methods. I showed that a minor generalization of a simple method worked quite well in both high-dimensional and heavy-tailed target distributions. No other method of having the same properties is known. Another result is the non-reversible Markov process. In collaboration with the UK and Netherlands' researchers, we obtained quantitative results for non-reversible Markov processes in a Monte Carlo context.

Academic Significance and Societal Importance of the Research Achievements

対称なマルコフ連鎖の研究の成果により,研究開始以前に提案していた手法が,高次元にも,裾の重い分布にも有効に働くことがわかった.おなじ性質を持つ手法は知られていない.また,研究開始前後に,非対称なマルコフ過程の重要性がベイズ統計学者に認識され始めていた.我々がはじめて定量的な評価をしたことによって実際にどの程度有効であるか,どんな場合に有効であるかがよりはっきりわかった.

Report

(5 results)
  • 2019 Annual Research Report   Final Research Report ( PDF )
  • 2018 Research-status Report
  • 2017 Research-status Report
  • 2016 Research-status Report
  • Research Products

    (37 results)

All 2020 2019 2018 2017 2016 Other

All Int'l Joint Research (12 results) Journal Article (8 results) (of which Int'l Joint Research: 5 results,  Peer Reviewed: 8 results,  Acknowledgement Compliant: 1 results) Presentation (13 results) (of which Int'l Joint Research: 11 results,  Invited: 1 results) Book (1 results) Remarks (3 results)

  • [Int'l Joint Research] University College London/Warwick University(英国)

    • Related Report
      2019 Annual Research Report
  • [Int'l Joint Research] Delft University of Technology/Vrije Universiteit Amsterdam(オランダ)

    • Related Report
      2019 Annual Research Report
  • [Int'l Joint Research] Paris Dauphine University(フランス)

    • Related Report
      2019 Annual Research Report
  • [Int'l Joint Research] Warwick University/University College London/Manchester University(英国)

    • Related Report
      2018 Research-status Report
  • [Int'l Joint Research] TU Delft(オランダ)

    • Related Report
      2018 Research-status Report
  • [Int'l Joint Research] University of Gottingen(ドイツ)

    • Related Report
      2018 Research-status Report
  • [Int'l Joint Research] National University of Singapore(シンガポール)

    • Related Report
      2018 Research-status Report
  • [Int'l Joint Research] University College London/Warwick University(United Kingdom)

    • Related Report
      2017 Research-status Report
  • [Int'l Joint Research] National University of Singapore(Singapore)

    • Related Report
      2017 Research-status Report
  • [Int'l Joint Research] National University of Singapore(Singapore)

    • Related Report
      2016 Research-status Report
  • [Int'l Joint Research] University College London(United Kingdom)

    • Related Report
      2016 Research-status Report
  • [Int'l Joint Research] Oak Ridge National Laboratory(米国)

    • Related Report
      2016 Research-status Report
  • [Journal Article] Random walk Metropolis algorithm in high dimension with non-Gaussian target distributions2020

    • Author(s)
      Kamatani Kengo
    • Journal Title

      Stochastic Processes and their Applications

      Volume: 130 Issue: 1 Pages: 297-327

    • DOI

      10.1016/j.spa.2019.03.002

    • Related Report
      2019 Annual Research Report 2018 Research-status Report
    • Peer Reviewed
  • [Journal Article] On one-dimensional Riccati diffusions2019

    • Author(s)
      Bishop A. N.、Del Moral P.、Kamatani K.、R?millard B.
    • Journal Title

      The Annals of Applied Probability

      Volume: 29 Issue: 2 Pages: 1127-1187

    • DOI

      10.1214/18-aap1431

    • Related Report
      2018 Research-status Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] Bayesian inference for stable Levy-driven stochastic differential equations with high-frequency data2019

    • Author(s)
      Jasra Ajay、Kamatani Kengo、Masuda Hiroki
    • Journal Title

      Scandinavian Journal of Statistics

      Volume: 46 Issue: 2 Pages: 545-574

    • DOI

      10.1111/sjos.12362

    • Related Report
      2018 Research-status Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] Multilevel Particle Filters2017

    • Author(s)
      Jasra Ajay、Kamatani Kengo、Law Kody J. H.、Zhou Yan
    • Journal Title

      SIAM Journal on Numerical Analysis

      Volume: 55 Issue: 6 Pages: 3068-3096

    • DOI

      10.1137/17m1111553

    • Related Report
      2017 Research-status Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] A stable particle filter for a class of high-dimensional state-space models2017

    • Author(s)
      Beskos Alexandros、Crisan Dan、Jasra Ajay、Kamatani Kengo、Zhou Yan
    • Journal Title

      Advances in Applied Probability

      Volume: 49 Issue: 1 Pages: 24-48

    • DOI

      10.1017/apr.2016.77

    • Related Report
      2017 Research-status Report 2016 Research-status Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] Ergodicity of Markov chain Monte Carlo with reversible proposal2017

    • Author(s)
      Kamatani K.
    • Journal Title

      Journal of Applied Probability

      Volume: 54 Issue: 2 Pages: 638-654

    • DOI

      10.1017/jpr.2017.22

    • Related Report
      2017 Research-status Report
    • Peer Reviewed
  • [Journal Article] Ergodicity of Markov chain Monte Carlo with reversible proposal2017

    • Author(s)
      Kengo Kamatani
    • Journal Title

      Journal of Applied Probability

      Volume: 54

    • Related Report
      2016 Research-status Report
    • Peer Reviewed / Acknowledgement Compliant
  • [Journal Article] Multilevel Particle Filters: Normalizing Constant Estimation2016

    • Author(s)
      Ajay Jasra, Kengo Kamatani, Prince Peprah Osei, and Yan Zhou
    • Journal Title

      Statistics and Computing

      Volume: online Issue: 1 Pages: 47-60

    • DOI

      10.1007/s11222-016-9715-5

    • Related Report
      2016 Research-status Report
    • Peer Reviewed / Int'l Joint Research
  • [Presentation] Robust Markov chain Monte Carlo methodologies with respect to tail properties2020

    • Author(s)
      Kengo Kamatani
    • Organizer
      BayesComp
    • Related Report
      2019 Annual Research Report
    • Int'l Joint Research
  • [Presentation] 対称な提案を用いる次世代モンテカルロ法の研究2019

    • Author(s)
      鎌谷研吾
    • Organizer
      日本応用統計学会
    • Related Report
      2019 Annual Research Report
    • Invited
  • [Presentation] High-dimensional scaling limit of Monte Carlo methods2019

    • Author(s)
      Kengo Kamatani
    • Organizer
      Dynstoch
    • Related Report
      2019 Annual Research Report
    • Int'l Joint Research
  • [Presentation] High-dimensional scaling limit of Monte Carlo methods2019

    • Author(s)
      Kengo Kamatani
    • Organizer
      EcoSta
    • Related Report
      2019 Annual Research Report
    • Int'l Joint Research
  • [Presentation] Analysis of Markov Chain Monte Carlo Method with Heavy-tailed Target Distributions2019

    • Author(s)
      Kengo Kamatani
    • Organizer
      ISBA-EAC
    • Related Report
      2019 Annual Research Report
    • Int'l Joint Research
  • [Presentation] Scaling limits of piecewise deterministic Monte Carlo methods2019

    • Author(s)
      Kengo Kamatani
    • Organizer
      European Meeting of Statisticians
    • Related Report
      2019 Annual Research Report
    • Int'l Joint Research
  • [Presentation] Metropolis-within-piecewise deterministic Markov processes2019

    • Author(s)
      Kengo Kamatani
    • Organizer
      ERCIM
    • Related Report
      2019 Annual Research Report
    • Int'l Joint Research
  • [Presentation] Reversible proposal MCMC with heavy-tailed target distributions2018

    • Author(s)
      Kengo Kamatani
    • Organizer
      AIMS Conference
    • Related Report
      2018 Research-status Report
    • Int'l Joint Research
  • [Presentation] Reversible proposal MCMC with heavy-tailed target distributions2018

    • Author(s)
      Kengo Kamatani
    • Organizer
      Bayesian Computation for High-Dimensional Statistical Models
    • Related Report
      2018 Research-status Report
    • Int'l Joint Research
  • [Presentation] Bayesian inference for stable Levy driven stochastic differential equations with high-frequency data2018

    • Author(s)
      Kengo Kamatani
    • Organizer
      ERCIM 2018
    • Related Report
      2018 Research-status Report
    • Int'l Joint Research
  • [Presentation] Reversible proposal MCMC in high dimension2016

    • Author(s)
      Kengo Kamatani
    • Organizer
      SIAM Conference on Uncertainty Quantification (UQ16)
    • Place of Presentation
      Lausanne (Switzerland)
    • Related Report
      2016 Research-status Report
    • Int'l Joint Research
  • [Presentation] Some properties of the mixed preconditioned Crank-Nicolson algorithm2016

    • Author(s)
      Kengo Kamatani
    • Organizer
      IMS-APRM
    • Place of Presentation
      Hong Kong (China)
    • Related Report
      2016 Research-status Report
    • Int'l Joint Research
  • [Presentation] マルコフ連鎖モンテカルロ法の高次元解析2016

    • Author(s)
      鎌谷研吾
    • Organizer
      日本統計学会
    • Place of Presentation
      金沢大学 (石川県・金沢市)
    • Related Report
      2016 Research-status Report
  • [Book] モンテカルロ統計計算2020

    • Author(s)
      鎌谷 研吾、駒木 文保
    • Total Pages
      192
    • Publisher
      講談社
    • ISBN
      9784065191835
    • Related Report
      2019 Annual Research Report
  • [Remarks] HOMEPAGE OF KENGO KAMATANI

    • URL

      http://www.sigmath.es.osaka-u.ac.jp/~kamatani/research/

    • Related Report
      2019 Annual Research Report
  • [Remarks] HOMEPAGE OF KENGO KAMATANI

    • URL

      http://www.sigmath.es.osaka-u.ac.jp/~kamatani/research/index.html

    • Related Report
      2018 Research-status Report
  • [Remarks] KAMATANI, Kengo/ 鎌谷 研吾

    • URL

      http://www.sigmath.es.osaka-u.ac.jp/~kamatani/research/

    • Related Report
      2016 Research-status Report

URL: 

Published: 2016-04-21   Modified: 2022-02-16  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi