• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Variable selection methods in high-dimensional multivariate models and their applications

Research Project

Project/Area Number 16K00047
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Research Field Statistical science
Research InstitutionHiroshima University

Principal Investigator

Yasunori FUJIKOSHI  広島大学, 理学研究科, 名誉教授 (40033849)

Co-Investigator(Kenkyū-buntansha) 櫻井 哲朗  公立諏訪東京理科大学, 共通・マネジメント教育センター, 講師 (60609741)
Project Period (FY) 2016-04-01 – 2019-03-31
Project Status Completed (Fiscal Year 2018)
Budget Amount *help
¥4,420,000 (Direct Cost: ¥3,400,000、Indirect Cost: ¥1,020,000)
Fiscal Year 2018: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
Fiscal Year 2017: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
Fiscal Year 2016: ¥1,560,000 (Direct Cost: ¥1,200,000、Indirect Cost: ¥360,000)
Keywords多変量回帰モデル / 変数選択法 / 主成分分析 / 判別分析 / 情報量規準 / 一つ取って置き法 / 高次元漸近枠組 / 多変量モデル / 高次元漸近的枠組 / 1つ取って置き法 / 共分散構造 / モデル選択規準 / 高次元多変量モデル / 高次元一致性 / 検定型変数選択規準 / 高次元漸近分布 / 成長曲線モデル / 統計数学
Outline of Final Research Achievements

In multivariate analysis, especially, discriminant analysis, multivariate regression models, principal component analysis, canonical correlation analysis, etc., we derived sufficient conditions for consistency of variable selection methods based on information criteria when the sample size and the dimension are large. The methods have a computational problem when the number of variables are large. In order to avoid its computational problem, we proposed a generalized kick-one-out (KOO) method which shared the high-consistency property in discriminant analysis and multivariate regression model. Further, in the problem of rank estimation in multivariate linear model, we proposed a regularized information criterion,
which can be used for the case that the sample size is smaller then the dimension of variables, and studied its high-dimensional properties.

Academic Significance and Societal Importance of the Research Achievements

多変量解析においては情報が入手しやすくなったこともあって, 変数の次元が大きい場合の統計的方法や, 膨大な変数の中から有用な変数を抽出する変数選択法に高い関心がよせられている. 本研究は, このような高次元データ分析における重要な課題における基礎的研究のみならず応用に焦点を当てており, 統計科学分野における理論や応用に関して高い貢献が期待される.

Report

(4 results)
  • 2018 Annual Research Report   Final Research Report ( PDF )
  • 2017 Research-status Report
  • 2016 Research-status Report
  • Research Products

    (21 results)

All 2019 2018 2017 2016 Other

All Int'l Joint Research (2 results) Journal Article (9 results) (of which Int'l Joint Research: 6 results,  Peer Reviewed: 9 results) Presentation (10 results)

  • [Int'l Joint Research] Northeast Normal University(China)

    • Related Report
      2017 Research-status Report
  • [Int'l Joint Research] National University of Singapore(シンガポール)

    • Related Report
      2017 Research-status Report
  • [Journal Article] Consistency of test-based method for selection of variables in high-dimensional two group-discriminant analysis2019

    • Author(s)
      Y. Fujikoshi, T. Sakurai
    • Journal Title

      Japanese Journal of Statistics and Data Science

      Volume: 印刷中

    • NAID

      210000178548

    • Related Report
      2018 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Asymptotic null and non-null distributions of test statistics for redundancy in high-dimensional canonical correlation analysis2019

    • Author(s)
      R. Oda, H. Yanagihara, Y. Fujikoshi
    • Journal Title

      Random Matrices: Theory and Applications

      Volume: 8 Pages: 1950001-1950026

    • Related Report
      2018 Annual Research Report
    • Peer Reviewed
  • [Journal Article] A fast algorithm for optimizing ridge parameters in a generalized ridge regression by minimizing a model selection criterion2019

    • Author(s)
      M. Ohishi, H. Yanagihara, Y. Fujikoshi
    • Journal Title

      Journal of Statistical Planning and Inference

      Volume: 印刷中

    • Related Report
      2018 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Consistency of AIC and BIC in estimating the number of significant components in high-dimensional principal component analysis2018

    • Author(s)
      Z. Bai, P.K. Choi, Y. Fujikoshi
    • Journal Title

      Ann. Statist.

      Volume: 46 Pages: 1050-1076

    • Related Report
      2018 Annual Research Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] Limiting behavior of eigenvalues in high-dimensional MANOVA via RMT2018

    • Author(s)
      Z. Bai, P.K. Choi, Y. Fujikoshi
    • Journal Title

      Ann. Statist.

      Volume: 46 Pages: 2985-3013

    • Related Report
      2018 Annual Research Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] High-dimensional asymptotic behavior of the difference between the log-dterminants of two Whishart matrices2018

    • Author(s)
      Z. Bai, K.P. Choi, Y. Fujikoshi
    • Journal Title

      Ann. Statist.

      Volume: 46 Pages: 1050-1076

    • Related Report
      2017 Research-status Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] High-dimensional properties of AIC, BIC and Cp for estimation of dimensionality in canonical correlation analysis2017

    • Author(s)
      Y. Fujikoshi
    • Journal Title

      SUT Journal of Mathematics

      Volume: 53 Pages: 59-72

    • NAID

      120006732552

    • Related Report
      2017 Research-status Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] High-dimensional asymptotic behavior of the difference between the log-dterminants of two Whishart matrices2017

    • Author(s)
      H. Yanagihara, R. Oda, Y. Hashiyama, Y. Fujikoshi
    • Journal Title

      Journal of Multivariate Analysis

      Volume: 157 Pages: 70-86

    • Related Report
      2017 Research-status Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] High-dimensional consistency of rank estimation criteria in multivariate linear model2016

    • Author(s)
      Y. Fujikoshi, T. Sakurai
    • Journal Title

      Journal of Multivariate Anal.ysis

      Volume: 149 Pages: 199-212

    • Related Report
      2016 Research-status Report
    • Peer Reviewed / Int'l Joint Research
  • [Presentation] 2次判別関数に関する高次元漸近近似の誤差限界2018

    • Author(s)
      藤越康祝
    • Organizer
      2018年度統計関連学会連合大会
    • Related Report
      2018 Annual Research Report
  • [Presentation] 2群の線形判別法に関する誤判別確率の高次元漸近ロバストネスについて2018

    • Author(s)
      山田隆行, 櫻井哲朗, 藤越康祝
    • Organizer
      2018年度統計関連学会連合大会
    • Related Report
      2018 Annual Research Report
  • [Presentation] 正準判別における一致性を持つ高次元変数の選択法2018

    • Author(s)
      鈴木裕也, 小田凌也, 柳原宏和, 藤越康祝
    • Organizer
      2018年度統計関連学会連合大会
    • Related Report
      2018 Annual Research Report
  • [Presentation] 多変量回帰分析や判別分析などにおける新たな変数選択法の提案2018

    • Author(s)
      櫻井哲朗, 藤越康祝
    • Organizer
      2018年度統計関連学会連合大会
    • Related Report
      2018 Annual Research Report
  • [Presentation] 単調欠測データをもつ成長曲線モデルに関するAIC型選択規準2018

    • Author(s)
      八木文香, 瀬尾隆, 藤越康祝
    • Organizer
      2018年度統計関連学会連合大会
    • Related Report
      2018 Annual Research Report
  • [Presentation] 非正規多変量回帰モデルにおける検定統計量および固有値の高次元かつ大標本のもとでの漸近分布2017

    • Author(s)
      藤越康祝
    • Organizer
      2017年度統計関連学会連合大会
    • Related Report
      2017 Research-status Report
  • [Presentation] 共分散構造をもつ多変量回帰モデルにおけるCp型の変数選択規準の高次元一致性2017

    • Author(s)
      櫻井哲朗、藤越康祝
    • Organizer
      2017年度統計関連学会連合大会
    • Related Report
      2017 Research-status Report
  • [Presentation] WおよびZ判別法についてー大標本かつ高次元の下で考察2017

    • Author(s)
      山田隆行、櫻井哲朗、藤越康祝
    • Organizer
      2017年度統計関連学会連合大会
    • Related Report
      2017 Research-status Report
  • [Presentation] 共分散構造をもつ多変量回帰モデルにおける変数選択規準の高次元一致性2016

    • Author(s)
      櫻井哲朗, 藤越康祝
    • Organizer
      2016年度統計関連連合大会
    • Place of Presentation
      金沢大学
    • Year and Date
      2016-09-04
    • Related Report
      2016 Research-status Report
  • [Presentation] 判別分析におけるL1ペナルティー及び情報量規準を用いた変数選択の比較2016

    • Author(s)
      落合翔太, 中川智之, 柳原宏和, 藤越康祝
    • Organizer
      2016年度統計関連連合大会
    • Place of Presentation
      金沢大学
    • Year and Date
      2016-09-04
    • Related Report
      2016 Research-status Report

URL: 

Published: 2016-04-21   Modified: 2022-02-22  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi