• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Developing a theory for model selection in semiparametric statistical analysis

Research Project

Project/Area Number 16K00050
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Research Field Statistical science
Research InstitutionThe Institute of Statistical Mathematics (2018-2021)
Kyushu University (2016-2017)

Principal Investigator

Ninomiya Yoshiyuki  統計数理研究所, 数理・推論研究系, 教授 (50343330)

Project Period (FY) 2016-04-01 – 2022-03-31
Project Status Completed (Fiscal Year 2021)
Budget Amount *help
¥4,420,000 (Direct Cost: ¥3,400,000、Indirect Cost: ¥1,020,000)
Fiscal Year 2020: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2019: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2018: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2017: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2016: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Keywords因果推論 / 傾向スコア解析 / 情報量規準 / スパース推定 / セミパラメトリック推定 / 統計的漸近理論 / モデル選択 / SURE理論 / 欠測データ解析 / 周辺構造モデル / 生存時間解析 / スパース正則化法 / 変化点解析
Outline of Final Research Achievements

In causal inference, what is observed and what is actually observed usually influence each other, and applying classical statistical theory gives unreasonable results. One solution to this problem is to use propensity score analysis, which is rapidly developing, but the method of model selection, i.e., what regression model to use, has not been established. In this study, we developed an information criterion, a standard tool for model selection, for propensity score analysis and completed the general theory.

Academic Significance and Societal Importance of the Research Achievements

因果推論の情報量規準としては,数理的に妥当でないものが試験的に用いられていたが,それは本成果の情報量規準と大幅に異なる値を返すものであった.つまり,両者のモデル選択の結果は相当に異なるものであり,本提案は今後標準的に用いられていくことが期待される.因果推論は機械学習・医学統計・計量経済学でのホットトピックであり,またモデル選択は統計解析において不可欠なタスクであるため,本成果の意義は小さくないものである.

Report

(7 results)
  • 2021 Annual Research Report   Final Research Report ( PDF )
  • 2020 Research-status Report
  • 2019 Research-status Report
  • 2018 Research-status Report
  • 2017 Research-status Report
  • 2016 Research-status Report
  • Research Products

    (30 results)

All 2022 2021 2019 2018 2017 2016 Other

All Journal Article (16 results) (of which Peer Reviewed: 9 results,  Open Access: 2 results,  Acknowledgement Compliant: 1 results) Presentation (13 results) (of which Int'l Joint Research: 2 results,  Invited: 2 results) Remarks (1 results)

  • [Journal Article] 傾向スコア解析のための三重頑健情報量規準2022

    • Author(s)
      二宮 嘉行
    • Journal Title

      日本統計学会誌

      Volume: 51 Pages: 275-294

    • Related Report
      2021 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Information criteria for sparse methods in causal inference2022

    • Author(s)
      Yoshiyuki Ninomiya
    • Journal Title

      arXiv preprint

      Volume: 2203.15308 Pages: 1-36

    • Related Report
      2021 Annual Research Report
  • [Journal Article] Information criteria for detecting change-points in the Cox proportional hazards model2022

    • Author(s)
      Ryoto Ozaki, Yoshiyuki Ninomiya
    • Journal Title

      arXiv preprint

      Volume: 2203.15973 Pages: 1-26

    • Related Report
      2021 Annual Research Report
  • [Journal Article] Smoothly varying ridge regularization2021

    • Author(s)
      Daeju Kim, Shuichi Kawano, Yoshiyuki Ninomiya
    • Journal Title

      arXiv preprint

      Volume: 2102.00136 Pages: 1-21

    • Related Report
      2021 Annual Research Report
  • [Journal Article] Selective inference in propensity score analysis2021

    • Author(s)
      Yoshiyuki Ninomiya, Yuta Umezu, Ichiro Takeuchi
    • Journal Title

      arXiv preprint

      Volume: 2105.00416 Pages: 1-32

    • Related Report
      2021 Annual Research Report
  • [Journal Article] Discriminant Analysis via Smoothly Varying Regularization2021

    • Author(s)
      Hisao Yoshida, Shuichi Kawano, Yoshiyuki Ninomiya
    • Journal Title

      Intelligent Decision Technologies

      Volume: 238 Pages: 441-455

    • DOI

      10.1007/978-981-16-2765-1_37

    • ISBN
      9789811627644, 9789811627651
    • Related Report
      2021 Annual Research Report
    • Peer Reviewed
  • [Journal Article] A modification of MaxT procedure using spurious correlations2021

    • Author(s)
      Yoshiyuki Ninomiya, Satoshi Kuriki, Toshihiko Shiroishi, Toyoyuki Takada
    • Journal Title

      Journal of Statistical Planning and Inference

      Volume: 214 Pages: 128-138

    • DOI

      10.1016/j.jspi.2021.02.001

    • Related Report
      2021 Annual Research Report 2020 Research-status Report
    • Peer Reviewed
  • [Journal Article] 選択的推論 ~データサイエンスにおけるquiet scandalの克服~2021

    • Author(s)
      二宮 嘉行
    • Journal Title

      エストレーラ

      Volume: 331 Pages: 14-19

    • Related Report
      2021 Annual Research Report
  • [Journal Article] Prior intensified information criterion2021

    • Author(s)
      Yoshiyuki Ninomiya
    • Journal Title

      arXiv preprint

      Volume: 2110.12145 Pages: 1-26

    • Related Report
      2021 Annual Research Report
  • [Journal Article] Doubly robust criterion for causal inference2021

    • Author(s)
      Takamichi Baba, Yoshiyuki Ninomiya
    • Journal Title

      arXiv preprint

      Volume: 2110.14525 Pages: 1-28

    • Related Report
      2021 Annual Research Report
  • [Journal Article] Discriminant analysis via smoothly varying regularization2021

    • Author(s)
      Hisao Yoshida, Shuichi Kawano, Yoshiyuki Ninomiya
    • Journal Title

      Proceedings of the 13th KES International Conference on Intelligent Decision Technologies

      Volume: TBA

    • Related Report
      2020 Research-status Report
    • Peer Reviewed
  • [Journal Article] AIC for the Group Lasso in Generalized Linear Models2019

    • Author(s)
      Satoshi Komatsu, Yuta Yamashita, Yoshiyuki Ninomiya
    • Journal Title

      Japanese Journal of Statistics and Data Science

      Volume: 2 Issue: 2 Pages: 545-558

    • DOI

      10.1007/s42081-019-00052-0

    • NAID

      210000177163

    • Related Report
      2019 Research-status Report
    • Peer Reviewed
  • [Journal Article] AIC for the non-concave penalized likelihood method2019

    • Author(s)
      Umezu Yuta、Shimizu Yusuke、Masuda Hiroki、Ninomiya Yoshiyuki
    • Journal Title

      Annals of the Institute of Statistical Mathematics

      Volume: 71 Issue: 2 Pages: 247-274

    • DOI

      10.1007/s10463-018-0649-x

    • Related Report
      2018 Research-status Report
    • Peer Reviewed
  • [Journal Article] A $C_p$ criterion for semiparametric causal inference2017

    • Author(s)
      Baba, T., Kanemori, T. and Ninomiya, Y.
    • Journal Title

      Biometrika

      Volume: 104 Issue: 4 Pages: 845-861

    • DOI

      10.1093/biomet/asx054

    • Related Report
      2017 Research-status Report
    • Peer Reviewed
  • [Journal Article] AIC for the LASSO in generalized linear models2016

    • Author(s)
      Ninomiya, Y. and Kawano, S.
    • Journal Title

      Electronic Journal of Statistics

      Volume: 10 Issue: 2 Pages: 2537-2560

    • DOI

      10.1214/16-ejs1179

    • Related Report
      2016 Research-status Report
    • Peer Reviewed / Open Access / Acknowledgement Compliant
  • [Journal Article] Ridge-type regularization method for questionnaire data analysis2016

    • Author(s)
      Y., Umezu, H., Matsuoka, H., Ikeda and Y. Ninomiya
    • Journal Title

      Pacific Journal of Mathematics for Industry

      Volume: 8 Issue: 1 Pages: 1-9

    • DOI

      10.1186/s40736-016-0024-x

    • Related Report
      2016 Research-status Report
    • Peer Reviewed / Open Access
  • [Presentation] Some information criteria for semiparametric propensity score analysis2022

    • Author(s)
      Yoshiyuki Ninomiya
    • Organizer
      ISI-ISM-ISSAS Joint Conference
    • Related Report
      2021 Annual Research Report
  • [Presentation] 形式的な AIC が機能しない典型的な設定における AIC の再評価2021

    • Author(s)
      二宮 嘉行
    • Organizer
      統計関連学会連合大会
    • Related Report
      2021 Annual Research Report
  • [Presentation] 事前分布強調型の情報量規準について2021

    • Author(s)
      二宮 嘉行
    • Organizer
      統計関連学会連合大会
    • Related Report
      2021 Annual Research Report
  • [Presentation] 傾向スコア解析におけるスパース推定のための情報量規準2021

    • Author(s)
      二宮 嘉行
    • Organizer
      日本統計学会春季集会
    • Related Report
      2020 Research-status Report
  • [Presentation] 傾向スコア解析におけるスパース推定と選択的推論2021

    • Author(s)
      二宮 嘉行
    • Organizer
      統計関連学会連合大会
    • Related Report
      2020 Research-status Report
  • [Presentation] A Cp criterion for semiparametric causal inference2019

    • Author(s)
      Yoshiyuki Ninomiya
    • Organizer
      The 11th ICSA International Conference
    • Related Report
      2019 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Yoshiyuki Ninomiya2019

    • Author(s)
      AIC for Change-Point Models and Its Application to a Biological Data Analysis
    • Organizer
      ISI-ISM-ISSAS Joint Conference
    • Related Report
      2018 Research-status Report
    • Int'l Joint Research
  • [Presentation] 変化点解析におけるモデル選択理論2018

    • Author(s)
      二宮 嘉行
    • Organizer
      リスク解析戦略研究センターシンポジウム
    • Related Report
      2018 Research-status Report
  • [Presentation] 一般化線形モデルにおける LASSO に対する AIC2018

    • Author(s)
      二宮 嘉行
    • Organizer
      研究討論会「土木工学におけるスパースモデリングの可能性」
    • Related Report
      2018 Research-status Report
    • Invited
  • [Presentation] 計量生物学との交流からもたらされる数理統計研究の広がり・深化2018

    • Author(s)
      二宮 嘉行
    • Organizer
      統計関連学会連合大会
    • Related Report
      2018 Research-status Report
  • [Presentation] 変化点解析におけるモデル選択理論とその応用2018

    • Author(s)
      二宮 嘉行
    • Organizer
      研究集会「高次元量子雑音の統計モデリング」
    • Related Report
      2018 Research-status Report
  • [Presentation] Regularization parameter selection for sparse methods via AIC2017

    • Author(s)
      Yoshiyuki Ninomiya
    • Organizer
      9th Conference of the Asian Regional Section of the International Association for Statistical Computing
    • Related Report
      2017 Research-status Report
  • [Presentation] 混合効果モデルに対する情報量規準とスパース推定2016

    • Author(s)
      二宮 嘉行, 楊 道偉, 松井 秀俊
    • Organizer
      統計関連合同大会
    • Place of Presentation
      金沢
    • Related Report
      2016 Research-status Report
  • [Remarks] 二宮 嘉行 (Yoshiyuki Ninomiya) - マイポータル - researchmap

    • URL

      https://researchmap.jp/read0093801/

    • Related Report
      2019 Research-status Report

URL: 

Published: 2016-04-21   Modified: 2023-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi