• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Hubness Analysis

Research Project

Project/Area Number 16K00066
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Research Field Statistical science
Research InstitutionNagasaki University (2019-2020)
Yamagata University (2016-2018)

Principal Investigator

SUZUKI Ikumi  長崎大学, 情報データ科学部, 准教授 (20637730)

Project Period (FY) 2016-04-01 – 2021-03-31
Project Status Completed (Fiscal Year 2020)
Budget Amount *help
¥4,550,000 (Direct Cost: ¥3,500,000、Indirect Cost: ¥1,050,000)
Fiscal Year 2019: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2018: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2017: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2016: ¥1,820,000 (Direct Cost: ¥1,400,000、Indirect Cost: ¥420,000)
Keywords近傍法 / ハブネス / 半教師あり学習 / 高次元 / 空間中心性 / ハブの軽減 / Hubness / Semi-supervised learning / Spatial centrality / 大規模高次元データ / 機械学習
Outline of Final Research Achievements

Lately Big-data gain a lot of attention, however it is still hard problem to get to information we need. In this research, we focus on one of the curse of dimensionality problem, hubness, to establish firm and robust method. We profoundly extend our original hubness reduction method to understand the behind mechanism of hubness.

Academic Significance and Societal Importance of the Research Achievements

大規模高次元データは機械学習や統計科学的に重要な対象であり,低次元の場合とは異る様相を見せることが知られているが,その理解はまったく十分ではない.特に新しい概念であるハブの問題は,高次元空間でハブが出現し問題となる,という指摘に留まっており,特にその解決法は,申請者らの研究以外世界的にもあまり見当たらない.データが増えるにつれ,欲しい情報にたどり着くことは難しい.その要因の一つであるハブの存在が悪影響を与えていると考えられ,妥当な検索結果を得ることができないという障害が一因となっていると考えられる.一般的な大規模高次元データに対する分類・検索などの様々な応用につながるため,実用的な意義は大きい

Report

(6 results)
  • 2020 Annual Research Report   Final Research Report ( PDF )
  • 2019 Research-status Report
  • 2018 Research-status Report
  • 2017 Research-status Report
  • 2016 Research-status Report
  • Research Products

    (4 results)

All 2020 2018 2017

All Presentation (4 results) (of which Int'l Joint Research: 3 results,  Invited: 1 results)

  • [Presentation] Target Evaluation for Neural Language Model using Japanese Case Frame2020

    • Author(s)
      Kazuhito Tamura, Ikumi Suzuki, Kazuo Hara
    • Organizer
      The 12th International Joint Conference on Knowledge Discovery, Knowledge Engineering and Knowledge Management
    • Related Report
      2020 Annual Research Report
    • Int'l Joint Research
  • [Presentation] 日本語格フレームを用いた言語モデルの評価2020

    • Author(s)
      田村和仁,原一夫,鈴木郁美
    • Organizer
      第34回 人工知能学会全国大会
    • Related Report
      2020 Annual Research Report
  • [Presentation] Elimination of Spatial Centrality; Hubness in High-Dimensional Problem and Its Reduction Method2018

    • Author(s)
      Ikumi Suzuki
    • Organizer
      Asia Pacific Society for Computing and Information Technology 2018 Annual Meeting
    • Related Report
      2018 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Centered kNN Graph for Semi-Supervised Learning2017

    • Author(s)
      Ikumi Suzuki, Kazuo Hara
    • Organizer
      SIGIR 2017
    • Related Report
      2017 Research-status Report
    • Int'l Joint Research

URL: 

Published: 2016-04-21   Modified: 2022-01-27  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi