Project/Area Number |
16K00067
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Research Field |
Statistical science
|
Research Institution | The Institute of Statistical Mathematics |
Principal Investigator |
|
Project Period (FY) |
2016-04-01 – 2019-03-31
|
Project Status |
Completed (Fiscal Year 2018)
|
Budget Amount *help |
¥2,340,000 (Direct Cost: ¥1,800,000、Indirect Cost: ¥540,000)
Fiscal Year 2018: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Fiscal Year 2017: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Fiscal Year 2016: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
|
Keywords | スパース正則化 / 円滑閾値型推定方程式 / ボラティリティ / 経験類似度 / トピックモデル / 多変量自己回帰モデル / 対数死亡率 / マスク効果 / HARモデル / モデル信頼集合 / 時系列解析 / 変数選択 / 推定方程式 / 多変量時系列 |
Outline of Final Research Achievements |
We promoted the smooth-threshold estimation equations (STEE) to develop a prediction model with high accuracy even in high dimensional time series analysis. First, we worked with variable selection problem in volatility forecasting. We focused on empirical similarity-based models which turned out to produce better forecasting. We also compared topic score series which were extracted news text data using a dynamic topic model. Some topic score series are found to help forecasting. We also applied sparse regularization to vector autoregressive models, especially to the residual vector series from Lee-Carter model for log-mortality. Finally we proposed a variable selection method with which we can salvage true causal variables masked by other variables with strong marginal correlation.
|
Academic Significance and Societal Importance of the Research Achievements |
IoTの推進により,学術・社会の両面でさまざまなセンサーデータが取得可能になっており,その多くは時間と共に観測される時系列データで,往々にして多変量である.従来の多変量時系列モデルは,比較的少数の変数間の相互共分散を通じてリード・ラグ関係を抽出するものであったが,ラグが深くなると高次元では推定が破綻する.本研究で試みたスパース推定との組合せは,今後の大容量の時系列解析につながる成果である.
|