• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Improving the accuracy of RNA secondary structure prediction by machine learning based on next-generation sequencing data

Research Project

Project/Area Number 16K00404
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Research Field Life / Health / Medical informatics
Research InstitutionKeio University

Principal Investigator

Sato Kengo  慶應義塾大学, 理工学部(矢上), 講師 (20365472)

Project Period (FY) 2016-04-01 – 2020-03-31
Project Status Completed (Fiscal Year 2019)
Budget Amount *help
¥4,550,000 (Direct Cost: ¥3,500,000、Indirect Cost: ¥1,050,000)
Fiscal Year 2018: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
Fiscal Year 2017: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
Fiscal Year 2016: ¥1,690,000 (Direct Cost: ¥1,300,000、Indirect Cost: ¥390,000)
Keywordsバイオインフォマティクス / RNA二次構造予測 / 機械学習 / NGSデータ
Outline of Final Research Achievements

We have developed a machine learning algorithm that makes it possible to use secondary structure profiles, which are partial structural information, as weak-level learning data, and aims to improve the accuracy of RNA secondary structure prediction without overfitting by learning a large number of secondary structure models that are more precise than existing methods. First, we developed a more robust and accurate method for RNA secondary structure prediction by integrating the free energy minimization method based on the existing Turner thermodynamic model with the machine learning method using a structured SVM. The results of the computer experiments showed that no overfitting was observed, unlike in the existing methods, and the prediction accuracy was improved.

Academic Significance and Societal Importance of the Research Achievements

RNA 二次構造予測は古くから研究されているが,長い配列に対する予測精度は未だに十分とは言えない.本研究によりRNA二次構造予測の精度が向上し,生体内におけるRNAの機能を推定する手がかりが得られることが期待される.さらに,RNAウィルスをターゲットとする創薬などに応用することが可能である.

Report

(5 results)
  • 2019 Annual Research Report   Final Research Report ( PDF )
  • 2018 Research-status Report
  • 2017 Research-status Report
  • 2016 Research-status Report
  • Research Products

    (15 results)

All 2020 2019 2018 2017 2016 Other

All Journal Article (4 results) (of which Int'l Joint Research: 1 results,  Peer Reviewed: 4 results,  Open Access: 4 results) Presentation (9 results) (of which Int'l Joint Research: 2 results,  Invited: 1 results) Remarks (2 results)

  • [Journal Article] An improved de novo genome assembly of the common marmoset genome yields improved contiguity and increased mapping rates of sequence data2020

    • Author(s)
      Jayakumar Vasanthan、Ishii Hiromi、Seki Misato、Kumita Wakako、Inoue Takashi、Hase Sumitaka、Sato Kengo、Okano Hideyuki、Sasaki Erika、Sakakibara Yasubumi
    • Journal Title

      BMC Genomics

      Volume: 21 Issue: S3 Pages: 243-243

    • DOI

      10.1186/s12864-020-6657-2

    • Related Report
      2019 Annual Research Report
    • Peer Reviewed / Open Access / Int'l Joint Research
  • [Journal Article] Extension of Question-Answering Program to Automatically Answering the Medical Licensing Examination to Drug Related Questions2018

    • Author(s)
      Mizuguchi Tatsuya、Ito Shino、Sato Kengo、Sakakibara Yasubumi
    • Journal Title

      Transactions of the Japanese Society for Artificial Intelligence

      Volume: 33 Issue: 6 Pages: E-I58_1-10

    • DOI

      10.1527/tjsai.E-I58

    • ISSN
      1346-0714, 1346-8030
    • Year and Date
      2018-11-01
    • Related Report
      2018 Research-status Report
    • Peer Reviewed / Open Access
  • [Journal Article] A max-margin training of RNA secondary structure prediction integrated with the thermodynamic model2018

    • Author(s)
      Akiyama Manato、Sato Kengo、Sakakibara Yasubumi
    • Journal Title

      Journal of Bioinformatics and Computational Biology

      Volume: 16 Issue: 06 Pages: 1840025-1840025

    • DOI

      10.1142/s0219720018400255

    • Related Report
      2018 Research-status Report
    • Peer Reviewed / Open Access
  • [Journal Article] Convolutional neural network based on SMILES representation of compounds for detecting chemical motif2018

    • Author(s)
      Hirohara Maya、Saito Yutaka、Koda Yuki、Sato Kengo、Sakakibara Yasubumi
    • Journal Title

      BMC Bioinformatics

      Volume: 19 Issue: S19 Pages: 526-526

    • DOI

      10.1186/s12859-018-2523-5

    • Related Report
      2018 Research-status Report
    • Peer Reviewed / Open Access
  • [Presentation] A max-margin training of RNA secondary structure prediction integrated with the thermodynamic model2020

    • Author(s)
      Akiyama, M., Sato, K., Sakakibara, Y.
    • Organizer
      Noncoding RNAs: Mechanism,Function and Therapies, Keystone Symposia
    • Related Report
      2019 Annual Research Report
    • Int'l Joint Research
  • [Presentation] A max-margin training of RNA secondary structure prediction integrated with the thermodynamic model2019

    • Author(s)
      Akiyama, M., Sato, K., Sakakibara, Y.
    • Organizer
      RNA Informatics
    • Related Report
      2019 Annual Research Report
    • Int'l Joint Research
  • [Presentation] 機械学習を用いたRNA二次構造予測2018

    • Author(s)
      佐藤健吾
    • Organizer
      日本バイオインフォマティクス学会九州地域部会セミナー
    • Related Report
      2018 Research-status Report
    • Invited
  • [Presentation] 深層学習に基づくRNAグアニン4重鎖構造識別法の検討2018

    • Author(s)
      加藤有己,佐藤健吾,Jakob Hull Havgaard,河原行郎
    • Organizer
      第20回日本RNA学会年会
    • Related Report
      2018 Research-status Report
  • [Presentation] RNA secondary structure prediction using deep learning2017

    • Author(s)
      Akiyama, M., Sakakibara, Y., Sato, K.
    • Organizer
      第6回生命医薬情報学連合大会,日本バイオインフォマティクス学会2017年年会
    • Related Report
      2017 Research-status Report
  • [Presentation] がん細胞株における derived RNA のプロファイル解析2017

    • Author(s)
      青木言太,土谷麻里子,小坂威雄,長谷純崇,佐藤健吾,水野隆一,大家基嗣,榊原康文
    • Organizer
      第19回日本RNA学会年会
    • Related Report
      2017 Research-status Report
  • [Presentation] 深層学習によるRNA二次構造予測2017

    • Author(s)
      秋山真那斗,榊原康文,佐藤健吾
    • Organizer
      第19回日本RNA学会年会
    • Related Report
      2017 Research-status Report
  • [Presentation] Improving RNA secondary structure prediction with weak label learning from NGS data2016

    • Author(s)
      Akiyama, M., Sakakibara, Y., Sato, K.
    • Organizer
      第5回生命医薬情報学連合大会,日本バイオインフォ マティクス学会2016年年会
    • Place of Presentation
      東京国際交流館プラザ平成(東京都・江東区)
    • Year and Date
      2016-09-29
    • Related Report
      2016 Research-status Report
  • [Presentation] Inverse folding of two interacting RNA molecules2016

    • Author(s)
      Taneda, A., Sato, K.
    • Organizer
      第5回生命医薬情報学連合大会,日本バイオインフォ マティクス学会2016年年会
    • Place of Presentation
      東京国際交流館プラザ平成(東京都・江東区)
    • Year and Date
      2016-09-29
    • Related Report
      2016 Research-status Report
  • [Remarks] MXfold: the max-margin based RNA folding algorithm

    • URL

      https://github.com/keio-bioinformatics/mxfold

    • Related Report
      2018 Research-status Report 2017 Research-status Report
  • [Remarks] Neuralfold

    • URL

      https://github.com/keio-bioinformatics/Neuralfold

    • Related Report
      2017 Research-status Report

URL: 

Published: 2016-04-21   Modified: 2021-02-19  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi