Project/Area Number |
16K01233
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Research Field |
Social systems engineering/Safety system
|
Research Institution | Fukushima University |
Principal Investigator |
|
Project Period (FY) |
2016-04-01 – 2019-03-31
|
Project Status |
Completed (Fiscal Year 2018)
|
Budget Amount *help |
¥1,950,000 (Direct Cost: ¥1,500,000、Indirect Cost: ¥450,000)
Fiscal Year 2018: ¥650,000 (Direct Cost: ¥500,000、Indirect Cost: ¥150,000)
Fiscal Year 2017: ¥650,000 (Direct Cost: ¥500,000、Indirect Cost: ¥150,000)
Fiscal Year 2016: ¥650,000 (Direct Cost: ¥500,000、Indirect Cost: ¥150,000)
|
Keywords | 利得配分枠組み / 協力ゲーム / 提携形成 / (sub-)人口単調配分枠組み / コア / (sub-)balanced game / 提携形成プロセス / 公正性 / PMAS / sub-balanced weight / 優加法性 / 凸性 / ゲーム理論 / 凸ゲーム / 相補性 / 応用数学 / ソフトコンピューティング / ナッシュプログラム / 経済理論 |
Outline of Final Research Achievements |
The core is a solution concept for coalitional games that require no coalition to break away from the grand coalition and take a joint action that makes all of them better off. In other words, no player has an incentive to split from the grand coalition under core allocations; more specifically, under core allocations, the grand coalition is maintained and stable. In this study, we propose and discuss a new solution concept (i.e.,set of allocations) under which each player has some incentive to form the grand coalition and a new notion of allocation scheme, sub-population monotonic allocation scheme(sub-pmas for short), as an extension of population monotonic allocation scheme (pmas for short). Furthermore, some relations among the notion of core, pmas, and sub-pmas and an existing theorem of sub-pmas are shown.
|
Academic Significance and Societal Importance of the Research Achievements |
本研究では,協力ゲームの枠組みを用いて,どのような利得配分の枠組みが,協力行動の拡大・推進をもたらすのかについて議論した.また,協力行動を壊さないことと,拡大・推進することの差異についても議論した.この議論の中で,ある種の公正性が,協力行動を積極的に促すこと,ある局面においては,協力行動を維持するだけであれば,公正性は,必ずしも重要ではないことも明らかにした. 以上のことから,協力行動の拡大・維持に関するインセンティブの与え方について,考える上での1つの示唆を与えたことは,学術的にも社会的にも意義があるといえる.
|