• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Study on Effective Learning on Multi-objective Sequential Optimization and its Applications

Research Project

Project/Area Number 16K01269
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Research Field Social systems engineering/Safety system
Research InstitutionKansai University

Principal Investigator

YUN YEBOON  関西大学, 環境都市工学部, 教授 (10325326)

Project Period (FY) 2016-04-01 – 2020-03-31
Project Status Completed (Fiscal Year 2019)
Budget Amount *help
¥4,680,000 (Direct Cost: ¥3,600,000、Indirect Cost: ¥1,080,000)
Fiscal Year 2018: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
Fiscal Year 2017: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
Fiscal Year 2016: ¥2,080,000 (Direct Cost: ¥1,600,000、Indirect Cost: ¥480,000)
Keywords逐次近似最適化 / 機械学習 / モデル予測 / メター学習 / meta-learning / RBF neural networks / hyper-parameter / 多目的モデル予測制御 / サポートベクターマシン / モデル予測制御 / 多目的最適化 / ニューラルネットワーク / 遺伝的アルゴリズム / メタモデル / 計算知能 / 工学設計 / 多目的逐次近似最適化
Outline of Final Research Achievements

In optimization with high cost objective function, an approximate function is used as a surrogate. For generating an approximate function based on some sample points, machine learning such as Radial basis networks and Support vector machines is effective. The precision of approximate functions depends on hyper-parameters used in basis and kernel functions, which is deeply related to learning. The new methods of meta-learning in SVM and RBF networks were proposed with the aim of generating an approximate function of high accuracy with small number of function evaluations. Furthermore, for multi-objective optimal control problems based on meta-model under a dynamic environment, this study suggested the method of combining machine learning methods and predetermined linear model in order to construct more accurate and stable model prediction, Finally, the effectiveness of the proposed methods in this research was validated through some numerical examples and engineering design problems.

Academic Significance and Societal Importance of the Research Achievements

計算知能や多目的最適化法に関し、そのものを対象とした研究はすでに多く存在する。しかし、基礎的研究にとどまることが多く、実際の応用という観点からの検討が不十分であるか、逆に理論的な根拠は希薄であるが、これまでの経験に基づく方法による試行錯誤的な研究も多いというのが現状である。さらに、GAやPSOの進化的アルゴリズムを用いたパレート解の生成法に関する研究は活発であるが、既存の方法では多くの計算回数を要する。これらのことを総合的に踏まえたうえで、多角な観点から、理論のみならず実問題へ適用性も考慮した成果であり、学術的にも実用的にも有意義であると考える。

Report

(5 results)
  • 2019 Annual Research Report   Final Research Report ( PDF )
  • 2018 Research-status Report
  • 2017 Research-status Report
  • 2016 Research-status Report
  • Research Products

    (16 results)

All 2019 2018 2017 2016 Other

All Int'l Joint Research (4 results) Journal Article (7 results) (of which Int'l Joint Research: 5 results,  Peer Reviewed: 7 results) Presentation (5 results) (of which Int'l Joint Research: 4 results)

  • [Int'l Joint Research] Pukyong National University(韓国)

    • Related Report
      2017 Research-status Report
  • [Int'l Joint Research] University of Waterloo(Canada)

    • Related Report
      2017 Research-status Report
  • [Int'l Joint Research] Pukyong National University(韓国)

    • Related Report
      2016 Research-status Report
  • [Int'l Joint Research] University of Waterloo(Canada)

    • Related Report
      2016 Research-status Report
  • [Journal Article] Meta-Learning of Selecting Optimal Hyperparameters for RBF Networks2019

    • Author(s)
      S. Yoshida,Y.B. Yun, H.Nakayama, M.Yoon
    • Journal Title

      第62回自動制御連合講演会論文集

      Volume: Vol.62

    • Related Report
      2019 Annual Research Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] On selecting hyper-parameters in RBF networks2019

    • Author(s)
      S. Yoshida,Y.B. Yun, H.Nakayama, M.Yoon
    • Journal Title

      International Conference on Nonlinear Analysis and Convex Analysis and International Conference on Optimization: Techniques and Applications

      Volume: - Pages: 185-185

    • Related Report
      2019 Annual Research Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] Design for Support Patterns of NATM Tunnel Using Machine Learning2019

    • Author(s)
      Y.B. Yun, G. Kaneko, H. Kusumi, A. Nishio, T. Kurotani
    • Journal Title

      ICITG 2019: Information Technology in Geo-Engineering

      Volume: - Pages: 376-382

    • DOI

      10.1007/978-3-030-32029-4_32

    • ISBN
      9783030320287, 9783030320294
    • Related Report
      2019 Annual Research Report
    • Peer Reviewed
  • [Journal Article] 機械学習を用いた多目的モデル予測制御2018

    • Author(s)
      尹 禮分、中山弘隆、尹 敏
    • Journal Title

      第61回自動制御連合講演会論文集

      Volume: 1 Pages: 1337-1340

    • NAID

      130007546632

    • Related Report
      2018 Research-status Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] Multi-Objective Model Predictive Control2018

    • Author(s)
      Yeboon Yun, Hirotaka Nakayama, Min Yoon
    • Journal Title

      Proceedings of 2018 Joint 10th International Conference on Soft Computing and Intelligent Systems and 19th International Symposium on Advanced Intelligent Systems

      Volume: 1 Pages: 304-308

    • DOI

      10.1109/scis-isis.2018.00067

    • Related Report
      2018 Research-status Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] Intelligent multi-objective model predictive control applied to steam turbine start-up2018

    • Author(s)
      Masakazu SHIRAKAWA, Yeboon YUN, Masao ARAKAWA
    • Journal Title

      Journal of Advanced Mechanical Design, Systems, and Manufacturing

      Volume: 12 Issue: 1 Pages: JAMDSM0007-JAMDSM0007

    • DOI

      10.1299/jamdsm.2018jamdsm0007

    • NAID

      130006898654

    • ISSN
      1881-3054
    • Related Report
      2017 Research-status Report
    • Peer Reviewed
  • [Journal Article] Ensembled Support Vector Machines for Meta-Modeling2016

    • Author(s)
      Yeboon Yun and Hirotaka Nakayama
    • Journal Title

      Communications in Computer and Information Science:Knowledge and Systems Sciences

      Volume: 660 Pages: 203-212

    • DOI

      10.1007/978-981-10-2857-1_18

    • ISBN
      9789811028564, 9789811028571
    • Related Report
      2016 Research-status Report
    • Peer Reviewed / Int'l Joint Research
  • [Presentation] Proposal of Meta-Learning in RBF Networks2019

    • Author(s)
      S.Yoshida, Y.B. Yun
    • Organizer
      The 14th International Symposium in Science and Technology (ISST 2019)
    • Related Report
      2019 Annual Research Report
    • Int'l Joint Research
  • [Presentation] Model Predictive Control with Multiple Objectives2018

    • Author(s)
      Yeboon Yun
    • Organizer
      The 13th International Symposium in Science and Technology
    • Related Report
      2018 Research-status Report
    • Int'l Joint Research
  • [Presentation] Multi-Objective Model Predictive Control and Its Applications2018

    • Author(s)
      Yeboon Yun
    • Organizer
      The InternationalWorkshop on Nonlinear Analysis and Optimization (IWNAO2018)
    • Related Report
      2018 Research-status Report
  • [Presentation] On Disposal Planning of Debris and Waste for Large-Scale Disasters2017

    • Author(s)
      Yeboon Yun
    • Organizer
      The 24th International Conference on Multiple Criteria Decision Making
    • Related Report
      2017 Research-status Report
    • Int'l Joint Research
  • [Presentation] Ensembled Support Vector Machines for Meta-Modeling2016

    • Author(s)
      Yeboon Yun
    • Organizer
      The 17th international symposium on Knowledge and Systems Sciences
    • Place of Presentation
      Kobe, Hyogo, Japan
    • Year and Date
      2016-11-04
    • Related Report
      2016 Research-status Report
    • Int'l Joint Research

URL: 

Published: 2016-04-21   Modified: 2022-02-22  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi