• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Study on high-frequency price-discovery processes of financial assets in data-driven approach

Research Project

Project/Area Number 16K03602
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Research Field Economic statistics
Research InstitutionKeio University

Principal Investigator

NAKATSUMA Teruo  慶應義塾大学, 経済学部(三田), 教授 (90303049)

Research Collaborator NAKAKITA Makoto  
TOYABE Tomoki  
Project Period (FY) 2016-04-01 – 2019-03-31
Project Status Completed (Fiscal Year 2018)
Budget Amount *help
¥4,420,000 (Direct Cost: ¥3,400,000、Indirect Cost: ¥1,020,000)
Fiscal Year 2018: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
Fiscal Year 2017: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
Fiscal Year 2016: ¥1,560,000 (Direct Cost: ¥1,200,000、Indirect Cost: ¥360,000)
Keywords金融高頻度データ / 取引間隔 / ボラティリティ / 日中季節性 / 板情報 / ベイズ推定 / マルコフ連鎖モンテカルロ法 / モデル選択 / 粒子フィルター / 計量ファイナンス / 高頻度データ分析 / ベイズ統計学
Outline of Final Research Achievements

In this study, we propose a novel estimation technique for time series models of financial high-frequency data. Specifically, we consider two types of time series models; one is a model of duration between executions of financial transactions while the other is a model of time-varying volatility (variance) in very short intervals. To make these models more realistic, we propose to incorporate intraday seasonality (a cyclical pattern of duration or volatility during trading hours) explicitly into both models and estimate it simultaneously with the model parameters. Since the proposed models are too complex to be estimated with traditional maximum likelihood estimation, we developed an efficient Bayesian Markov chain Monte Carlo (MCMC) method for these models. We applied our new method to real-world high-frequency data (commodity futures and stock prices) and demonstrated their advantage over the conventional models.

Academic Significance and Societal Importance of the Research Achievements

近年、金融市場においてミリ秒、マイクロ秒、さらに短い間隔で高速に取引を行って利益を狙うHFT (High-Frquency Trading、高速取引) と呼ばれる手法が急速に普及しており、その影響力が金融市場の安定性を脅かすのではないかという懸念が広がっている。本研究は、より現実的な設定の下で高頻度データの時系列モデルを構築することで、金融市場における資産価格形成メカニズムの理解を深めるとともに、高速取引における新しいリスク管理手法の発展のための一助となることを目指すものである。そして、提案モデルが従来使われてきたモデルよりも現実の高頻度データに対する当てはまりがよいことを示すことに成功した。

Report

(4 results)
  • 2018 Annual Research Report   Final Research Report ( PDF )
  • 2017 Research-status Report
  • 2016 Research-status Report
  • Research Products

    (14 results)

All 2018 2017 2016

All Journal Article (1 results) (of which Peer Reviewed: 1 results) Presentation (12 results) (of which Int'l Joint Research: 8 results) Book (1 results)

  • [Journal Article] Trading and Ordering Patterns of Market Participants in High Frequency Trading Environment -Empirical Study in the Japanese Stock Market-2018

    • Author(s)
      T.Saito, T.Adachi, T.Nakatsuma, A.Takahashi, H.Tsuda and N.Yoshino
    • Journal Title

      Asia-Pacific Financial Markets

      Volume: 25 Issue: 3 Pages: 179-220

    • DOI

      10.1007/s10690-018-9245-6

    • Related Report
      2018 Annual Research Report
    • Peer Reviewed
  • [Presentation] A Graphical Multi-Factor Model of Massively-Many Asset Returns: Application to Long-Term Portfolio Management2018

    • Author(s)
      Sakae Oya and Teruo Nakatsuma
    • Organizer
      International Society for Bayesian Analysis (ISBA) World Meeting
    • Related Report
      2018 Annual Research Report
    • Int'l Joint Research
  • [Presentation] Stochastic Conditional Duration Model with Intraday Seasonality and Limit Order Book Information2018

    • Author(s)
      Tomoki Toyabe and Teruo Nakatsuma
    • Organizer
      International Society for Bayesian Analysis (ISBA) World Meeting
    • Related Report
      2018 Annual Research Report
    • Int'l Joint Research
  • [Presentation] Bayesian Analysis of Intraday Stochastic Volatility Models with Skew Heavy-Tailed Error and Smoothing Spline Seasonality2018

    • Author(s)
      Teruo Nakatsuma and Makoto Nakakita
    • Organizer
      12th International Conference on Computational and Financial Econometrics
    • Related Report
      2018 Annual Research Report
    • Int'l Joint Research
  • [Presentation] Stochastic Conditional Duration Model with Intraday Seasonality and Limit Order Book Information2018

    • Author(s)
      Tomoki Toyabe and Teruo Nakatsuma
    • Organizer
      12th International Conference on Computational and Financial Econometrics
    • Related Report
      2018 Annual Research Report
    • Int'l Joint Research
  • [Presentation] Bayesian Analysis of Intraday Stochastic Volatility Models with Leverage and Skew Heavy-Tailed Error in High-Frequency Commodity Market2017

    • Author(s)
      中北誠・中妻照雄
    • Organizer
      関西計量経済学研究会
    • Place of Presentation
      広島大学東千田キャンパス(広島県広島市)
    • Year and Date
      2017-01-07
    • Related Report
      2016 Research-status Report
  • [Presentation] Bayesian Modeling of Autocorrelation and Intraday Seasonality in Financial Durations2017

    • Author(s)
      鳥谷部智規・中妻照雄
    • Organizer
      関西計量経済学研究会
    • Place of Presentation
      広島大学東千田キャンパス(広島県広島市)
    • Year and Date
      2017-01-07
    • Related Report
      2016 Research-status Report
  • [Presentation] Hierarchical Bayes Modeling of Autocorrelation and Intraday Seasonality in Financial Durations2017

    • Author(s)
      Tomoki Toyabe and Teruo Nakatsuma
    • Organizer
      2nd ISBA-EAC Conference
    • Related Report
      2017 Research-status Report
    • Int'l Joint Research
  • [Presentation] Bayesian Analysis of Intraday Stochastic Volatility Models with Leverage and Skew Heavy-Tailed Error in High-Frequency Commodity Market2017

    • Author(s)
      中北誠・中妻照雄
    • Organizer
      統計関連学会連合大会
    • Related Report
      2017 Research-status Report
  • [Presentation] Bayesian Analysis of Intraday Stochastic Volatility Models with Leverage and Skew Heavy-Tailed Error in High-Frequency Commodity Market2017

    • Author(s)
      Makoto Nakakita and Teruo Nakatsuma
    • Organizer
      11th International Conference on Computational and Financial Econometric
    • Related Report
      2017 Research-status Report
    • Int'l Joint Research
  • [Presentation] Hierarchical Bayes Modeling of Autocorrelation and Intraday Seasonality in Financial Durations2016

    • Author(s)
      Teruo Nakatsuma and Tomoki Yoyabe
    • Organizer
      10th International Conference on Computational and Financial Econometrics
    • Place of Presentation
      セビーリャ(スペイン)
    • Year and Date
      2016-12-09
    • Related Report
      2016 Research-status Report
    • Int'l Joint Research
  • [Presentation] 金先物の取引時間間隔の日中季節性について ―階層ベイズモデルによる分析―2016

    • Author(s)
      鳥谷部智規・中妻照雄
    • Organizer
      統計関連連合大会
    • Place of Presentation
      金沢大学角間キャンパス(石川県金沢市)
    • Year and Date
      2016-09-05
    • Related Report
      2016 Research-status Report
  • [Presentation] Hierarchical Bayes Modeling of Autocorrelation and Intraday Seasonality in Financial Durations2016

    • Author(s)
      Teruo Nakatsuma and Tomoki Yoyabe
    • Organizer
      ISBA World Meeting 2016
    • Place of Presentation
      カリャリ(イタリア)
    • Year and Date
      2016-06-13
    • Related Report
      2016 Research-status Report
    • Int'l Joint Research
  • [Book] Pythonによるファイナンス入門2018

    • Author(s)
      中妻照雄
    • Total Pages
      176
    • Publisher
      朝倉書店
    • ISBN
      9784254128949
    • Related Report
      2018 Annual Research Report

URL: 

Published: 2016-04-21   Modified: 2020-03-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi