Project/Area Number |
16K04876
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Research Field |
Nanostructural physics
|
Research Institution | Akashi National College of Technology |
Principal Investigator |
|
Research Collaborator |
KASAI Hideaki
Arevalo Ryan Lacdao
Aspera Susan Menez
Angelo Pelotenia Carlo
Arguelles Elvis Flaviano
|
Project Period (FY) |
2016-04-01 – 2019-03-31
|
Project Status |
Completed (Fiscal Year 2018)
|
Budget Amount *help |
¥4,940,000 (Direct Cost: ¥3,800,000、Indirect Cost: ¥1,140,000)
Fiscal Year 2018: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Fiscal Year 2017: ¥2,340,000 (Direct Cost: ¥1,800,000、Indirect Cost: ¥540,000)
Fiscal Year 2016: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
|
Keywords | 分子架橋 / 分子エレクトロニクス / 接合界面 / 機能性分子 / 第一原理計算 / センサー / 電子デバイス / ナノ構造物理 / 分子性架橋 / 物性理論 / 計算機マテリアルデザイン |
Outline of Final Research Achievements |
We investigated the effects of electric field on molecular bridge to gain insights into its design for applications in electronics and spintronics. We identified the changes in its band structures for the poly-porphyrin tapes with their different central metal atoms M (M = Co, Ni, Cu, Zn) and in the presence of electric field. For M = Cu and Zn, an applied field parallel to the width of the tapes easily induces electric dipole on the molecule and increases the band gap. For these cases, the d-bands are fully occupied and the πbands are near the Fermi level. Moreover, the induced electric dipole is greater for M = Cu and Zn than for M = Ni and Co. Calculation of the source-drain bias voltage found that for M = Co case, the minority and majority spin electrons have negative resistance and normal semiconductor properties, respectively. These results indicate that the electric conductivity of molecular bridge can be controlled by the application of electric fields.
|
Academic Significance and Societal Importance of the Research Achievements |
半導体電子デバイスはこれまで微細化により、集積度、省エネ化などの性能を上げてきたが、昨今、その原理的限界に達しようとしている。次世代のデバイス材料として、合成された分子を用いるものがある。本研究では、赤血球中で分子機械と称されるヘモグロビンにヒントを得て、そのガス交換を担う活性中心のポルフィリン構造を対象とした。ポルフィリンのユニットを繋げたテープ状ポリポルフィリンによる分子架橋において、分子周辺の電極で電圧を印加することにより、デバイスとしての機能を引き出せるかを研究した。その結果、現行のFETやトンネルダイオードに似た機能を分子一つで実現できる可能性があることが示された。
|