Project/Area Number |
16K04890
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Research Field |
Nanomaterials chemistry
|
Research Institution | Fukushima University (2018) Fukui Prefectural University (2016-2017) |
Principal Investigator |
TAIRA Shu 福島大学, 食農学類, 准教授 (30416672)
|
Project Period (FY) |
2016-04-01 – 2019-03-31
|
Project Status |
Completed (Fiscal Year 2018)
|
Budget Amount *help |
¥4,940,000 (Direct Cost: ¥3,800,000、Indirect Cost: ¥1,140,000)
Fiscal Year 2018: ¥1,950,000 (Direct Cost: ¥1,500,000、Indirect Cost: ¥450,000)
Fiscal Year 2017: ¥1,690,000 (Direct Cost: ¥1,300,000、Indirect Cost: ¥390,000)
Fiscal Year 2016: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
|
Keywords | イメージング / 質量分析 / 生体異物 / ナノ微粒子 / Nano-PALDI / 体内動態 / ユビキノール / ナノ材料 |
Outline of Final Research Achievements |
We analyzed localization of methyl 2-octynate (2-OAm) in sections of liver by nano particle assisted laser desorption/ionization (nano-PALDI) imaging mass spectrometry (IMS). 2-OAm was applied to mice skin and it permeated through the skin and accumulated in the liver. In livers of single dose mice, 2-OAm was delivered to the liver for 6 hours and excreted from the liver for 24 hours. On the other hand, in livers of long apply mice, 2-OAm was retained in the liver. Furthermore, we could be revealed that 2-OAm was accumulated in bile ducts by analyzing at a high resolution. In addition, CD8 staining indicated that an inflamed bile duct was observed. 2-OAm triggered the inflammation due to a coincident localization of 2-OAm and bile duct. This imaging approach is a promising technique for rapid quality evaluation of xenobiotics.
|
Academic Significance and Societal Importance of the Research Achievements |
本研究ではこれまで予測されていた肝疾患の原因を視覚的に明らかにしたことと、ナノ微粒子支援型質量分析(Nano-PALDI)法を応用したことが社会的・学術的意義を持つ。 社会的意義:肝疾患と生体異物の関係解明: 2-OAm皮膚塗布→経皮吸収による肝臓への薬剤送達→長期塗布による肝臓(胆管)への蓄積→抗原と認識→アポトーシス→炎症。生体異物が臓器炎症のトリガーとなることを視覚的に示す事に成功した。 学術的意義:2-OAmは分子量が154と非常に小さな物質でありイメージングMSで使用するMALDI法では測定しにくい。Nano-PALDI法は低分子側をノイズなく測定できることから今回の成功に至った。
|