Creation of flexible solar and photocharge devices with nonwoven cloth consists of coaxial ceramic nanofibers
Project/Area Number |
16K04901
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Research Field |
Nanomaterials engineering
|
Research Institution | Kagoshima University |
Principal Investigator |
Horie Yuji 鹿児島大学, 理工学域工学系, 教授 (50201760)
|
Research Collaborator |
Nomiyama Teruaki
|
Project Period (FY) |
2016-04-01 – 2019-03-31
|
Project Status |
Completed (Fiscal Year 2018)
|
Budget Amount *help |
¥4,680,000 (Direct Cost: ¥3,600,000、Indirect Cost: ¥1,080,000)
Fiscal Year 2018: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
Fiscal Year 2017: ¥1,560,000 (Direct Cost: ¥1,200,000、Indirect Cost: ¥360,000)
Fiscal Year 2016: ¥1,690,000 (Direct Cost: ¥1,300,000、Indirect Cost: ¥390,000)
|
Keywords | ナノファイバ / 不織布 / フレキシブルデバイス / 透明導電体 / 太陽電池 / 光蓄電池 / 電界紡糸法 / セラミック / 色素増感太陽電池 / 電荷移動特性 / 吸着剤 / 変換効率 / ナノ材料 / ナノワイヤーシート / 蓄電池 |
Outline of Final Research Achievements |
Ceramic nonwoven cloth which consists of nanofibers (NFs) of several tens of nm in diameter was prepared by electrospinning for some transparent conductive oxides (TCO). Coaxial NFs of TCO-NFs covered by TiO2 nanoparticle layer were inserted into the TiO2 mesoporous electrode of dye-sensitized solar cells (DSSCs), and the carrier transport characteristics and energy conversion efficiency were found to be improved. Furthermore, by coaxial NFs covered with a storage layer of WO3, photorechargeable (PRB) electrode were prepared in which photocharge and discharge was realized in a single electrode. By the coaxial structure of NFs, photocharge-discharge efficiency was improved together with inorganic sensitizer layer covering the coaxial NFs. For self-standing TCO nonwoven cloth, the conductivity and the flexibility were improved with the refinement of the preparation condition.
|
Academic Significance and Societal Importance of the Research Achievements |
電界紡糸法によって得られた透明導電ナノファイバの表面を,様々な機能材料によってコートした同軸ナノファイバ構造にすることで,従来の平面型デバイスよりも比表面積を格段に拡大させることができ,光励起キャリアの拡散長が短かったために用いられなかった材料を有効に利用できることを示した点で,得られた成果は意義深い.また,セラミックナノファイバからなる不織布状のフレキシブルシートにより,耐熱性に問題があるプラスチック基板の弱点を克服することができ,電子デバイスの基板レス化によるフレキシブル・軽量化によって,既存デバイスの利用機会の拡大のみならず ,新奇な電子デバイスの創出が期待されることを示すことができた.
|
Report
(4 results)
Research Products
(33 results)