Project/Area Number |
16K04919
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Research Field |
Nano/Microsystems
|
Research Institution | Tottori University |
Principal Investigator |
LEE Sang-Seok 鳥取大学, 工学研究科, 教授 (50625233)
|
Research Collaborator |
LEE jeong-o
|
Project Period (FY) |
2016-04-01 – 2019-03-31
|
Project Status |
Completed (Fiscal Year 2018)
|
Budget Amount *help |
¥4,810,000 (Direct Cost: ¥3,700,000、Indirect Cost: ¥1,110,000)
Fiscal Year 2018: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Fiscal Year 2017: ¥1,560,000 (Direct Cost: ¥1,200,000、Indirect Cost: ¥360,000)
Fiscal Year 2016: ¥2,470,000 (Direct Cost: ¥1,900,000、Indirect Cost: ¥570,000)
|
Keywords | マイクロ予備濃縮器 / 呼気分析 / ダブルレプリカ法 / ダブル転写法 / 1ppb / 作製プロセス / マイクロヒータ / 実験系 / マイクロ・ナノデバイス |
Outline of Final Research Achievements |
A double replica method was developed and applied to obtain a polymer based micropreconcentrator. We successfully fabricated the polymer microstructure micropreconcentrator based on Si mold. In the fabrication, first PDMS is poured into Si mold and we obtain female type mold made by PDMS. Then, we pour NOA63 polymer into PDMS female type mold and harden by UV irradiation. Finally, by peeling off NOA63 from PDMS female type mold, we obtain a polymer microstructure micropreconcentrator, which is the same structure to Si microstructure micropreconcentrator. In this study, we established double replica method including fabrication process conditions and obtained precise microstructure transfer results with less than 3 um in dimensions difference before and after transfer. Moreover, we also investigated applicability of microheater to shorten gas desorption time. As a result, we could obtain 300 degrees within 11-35 sec in case of 5-10 um thick Cu heater and 1V voltage apply.
|
Academic Significance and Societal Importance of the Research Achievements |
本研究により2種類の樹脂を用いるダブルレプリカ法という新しいマイクロ流体デバイスの作製法が確立できた。本新しい作製法を用いて本研究対象であったマイクロ予備濃縮器のみならず様々なマイクロデバイス作製への応用が期待できる。また本作製法は鋳型を繰り返し利用するため資源やエネルギーの削減にもつながる。さらに安価なデバイス作製の可能性を示したため樹脂構造体を持つマイクロ予備濃縮器による呼気分析法によるがん診断法が確立できれば、安価で容易にがんの早期診断が可能になる。がんの早期診断の他にも低濃度のガスセンシングまたはろ過などへの応用も可能であるため社会で必要とする汎用性が高い研究であると考える。
|