development of control technique for behavior of ionic liquid molecules at graphene/SiC surface and interface
Project/Area Number |
16K04939
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Research Field |
Applied materials
|
Research Institution | Ube National College of Technology |
Principal Investigator |
IKARI Tomonori 宇部工業高等専門学校, 電気工学科, 教授 (40419619)
|
Co-Investigator(Kenkyū-buntansha) |
内藤 正路 九州工業大学, 大学院工学研究院, 教授 (60264131)
|
Project Period (FY) |
2016-04-01 – 2019-03-31
|
Project Status |
Completed (Fiscal Year 2018)
|
Budget Amount *help |
¥4,810,000 (Direct Cost: ¥3,700,000、Indirect Cost: ¥1,110,000)
Fiscal Year 2018: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2017: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Fiscal Year 2016: ¥3,120,000 (Direct Cost: ¥2,400,000、Indirect Cost: ¥720,000)
|
Keywords | 表面・界面物性 / グラフェン / SiC / 準安定原子誘起電子分光法 / イオン液体 / 超薄膜 |
Outline of Final Research Achievements |
We have carried out the preparation of experimental setup for organic molecules (ionic liquids: IL) and the experiments for controlling behavior of organic molecules. In the preparation of experimental setup, we performed the development of metastable atom source with time of flight system and construction of sample preparation chamber with evaporators for organic molecules. Graphene or some reconstructed surface were formed on SiC substrate with annealing temperature. The electric charges at substrate surface were controlled by introducing different kind of atoms to these surface. We observed the influence of the surface structure and electric charge to behavior of organic molecules. In this research, mainly experimental techniques were low energy electron diffraction (LEED) for the observation of surface structure and metastable atom induced electron spectroscopy (MIES) for measurement of electronic structure.
|
Academic Significance and Societal Importance of the Research Achievements |
グラフェン及びSiC再構成表面への異種原子導入による局所的な電荷の制御や最表面構造による有機分子(イオン液体(IL)等)の配向等の振舞を制御できれば、エネルギー貯蔵デバイスの高効率化や微細化へ貢献できる。表面の水素化や酸化に関する知見は、表面の特徴を利用したデバイス開発において、非常に重要である。特に酸化については、アルカリ金属触媒を用いることで、従来のプロセスよりも低温で高効率に良質な膜を形成することが出来る。また、飛行時間差型準安定原子源の開発により、表面上の原子や有機分子による構造を傷つけることなく、最表面から真空側に浸み出した局所的な電子状態の観測を実現した。
|
Report
(4 results)
Research Products
(7 results)