Realization and application of extremely high-Q Fano resonances in multilayer systems
Project/Area Number |
16K04979
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Research Field |
Optical engineering, Photon science
|
Research Institution | Kobe University |
Principal Investigator |
Hayashi Shinji 神戸大学, 工学研究科, 名誉教授 (50107348)
|
Co-Investigator(Kenkyū-buntansha) |
藤井 稔 神戸大学, 工学研究科, 教授 (00273798)
|
Research Collaborator |
Zouheir Sekkat MAScIR
Dmitry Nesterenko V. Samara National Research University
|
Project Period (FY) |
2016-04-01 – 2019-03-31
|
Project Status |
Completed (Fiscal Year 2018)
|
Budget Amount *help |
¥4,810,000 (Direct Cost: ¥3,700,000、Indirect Cost: ¥1,110,000)
Fiscal Year 2018: ¥650,000 (Direct Cost: ¥500,000、Indirect Cost: ¥150,000)
Fiscal Year 2017: ¥1,560,000 (Direct Cost: ¥1,200,000、Indirect Cost: ¥360,000)
Fiscal Year 2016: ¥2,600,000 (Direct Cost: ¥2,000,000、Indirect Cost: ¥600,000)
|
Keywords | Fano共鳴 / 多層膜構造 / ATR分光 / 表面プラズモン / 導波モード / バイオセンサー / 表面増強分光 / 蛍光分子 / 導波路モード / 増強電場 / フォトクロミズム / 蛍光増強 / 多層膜系 / 表面増強 / 光チューニング / ファノ共鳴 / 多層膜 / 光センサー |
Outline of Final Research Achievements |
Over the past ten years, Fano resonances in metallic and dielectric nanostructures and metamaterials have been extensively studied. However, the nanofabrication of the nanostructures and metamaterials requires high cost procedures and time consuming. Furthermore, it is not easy to achieve high Q resonances due to fabrication imperfections. To overcome these difficulties, we attempted to realize and control high Q Fano resonances using planar multilayer structures, which can be fabricated easily by low cost procedures in short time. We could realize the Fano resonance with a Q value as high as 2800, which is much higher than the values reported so far. Incorporating photofunctional dye molecules into the multilayer structures, we succeeded in controlling the Fano resonance by irradiation of external light.
|
Academic Significance and Societal Importance of the Research Achievements |
ナノ構造でのFano共鳴は2つの輻射的な電磁気的モード間の結合で達成されるが、本研究の多層膜構造では本質的に非輻射的モードの結合によりFano共鳴が達成され、Fano共鳴の発現メカニズムが異なることを明らかにできた。さらに、多層膜構造は低コスト、短時間で作成でき、バイオセンサー、光スイッチ、表面増強分光等へ直接的に応用できる。また本研究により、光機能性Fano共鳴という新しい分野への糸口が得られた。
|
Report
(4 results)
Research Products
(20 results)