Project/Area Number |
16K05006
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Research Field |
General applied physics
|
Research Institution | Nippon Institute of Technology |
Principal Investigator |
|
Co-Investigator(Kenkyū-buntansha) |
大澤 正久 日本工業大学, 基幹工学部, 教授 (80280717)
|
Project Period (FY) |
2016-04-01 – 2019-03-31
|
Project Status |
Completed (Fiscal Year 2018)
|
Budget Amount *help |
¥4,810,000 (Direct Cost: ¥3,700,000、Indirect Cost: ¥1,110,000)
Fiscal Year 2018: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Fiscal Year 2017: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2016: ¥3,120,000 (Direct Cost: ¥2,400,000、Indirect Cost: ¥720,000)
|
Keywords | 磁気アルキメデス効果 / 磁気浮上 / 蓄光材料 / 燐光材料 / 非接触操作 / 非接触マニピュレーション / 光 / 磁場 / 磁気アルキメデス浮上 / 磁気アルキメデス / りん光 / レーザー / 非接触 / マニピュレーション |
Outline of Final Research Achievements |
The technology of manipulating objects without any physical contact such as optical tweezers is used for manipulating objects as small as several microns under a microscope. This method requires a strong laser beam and cannot move objects which are larger than the size of focal point of laser. To overcome such drawbacks, we have developed a new technology which uses magnetic property change in phosphorescent materials or persistent luminescent materials by the irradiation of light. These materials absorbs light, which causes their magnetic susceptibility change even at room temperature while they are in the excited state. After absorbing light, the material shows slow relaxation process, emission of light, which resulting in the significantly observable magnetic susceptibility change. We have successfully observed the repeated motion of the sample by turning ON and OFF of the light. Our technology is more common than former technologies and would be used for a variety of applications.
|
Academic Significance and Societal Importance of the Research Achievements |
これまでの非接触操作技術の代表例はレーザーピンセットであるが、非常に小さなものにしか適用できないのに対し、本研究で開発した磁場と光の両者を駆使した非接触操作技術は、巨視的な大きさの物体を操作することも可能である。また、ここで使われる光はLED等の弱い光で十分であるため、汎用性の高い技術となりうる。本研究によって、物体の並進操作を容易に実現できるようになった。今後、回転操作を実現できる技術を開発すれば、物体のあらゆる操作を非接触で出来ることになる。
|