Proposal for a transmission-grating-type focusing device achieving better performance than diffraction limit and its numerical simulation
Project/Area Number |
16K05019
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Research Field |
Quantum beam science
|
Research Institution | University of Hyogo |
Principal Investigator |
|
Research Collaborator |
Takayama Yuki
|
Project Period (FY) |
2016-04-01 – 2019-03-31
|
Project Status |
Completed (Fiscal Year 2018)
|
Budget Amount *help |
¥3,250,000 (Direct Cost: ¥2,500,000、Indirect Cost: ¥750,000)
Fiscal Year 2018: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Fiscal Year 2017: ¥260,000 (Direct Cost: ¥200,000、Indirect Cost: ¥60,000)
Fiscal Year 2016: ¥1,690,000 (Direct Cost: ¥1,300,000、Indirect Cost: ¥390,000)
|
Keywords | X線顕微鏡 / 放射光 / X線光学 / X線ナノビーム |
Outline of Final Research Achievements |
An inverse-phase composite zone plate (ZP) is proposed to gain a deeper focus than the diffraction-limited depth of focus, with little reduction in spatial resolution. The structure is a combination of an inner ZP functioning as a conventional phase ZP and an outer ZP functioning with third-order diffraction with opposite phase to the inner ZP. Complex amplitude distributions neighboring the focal point were calculated using diffraction integration. The depth of focus and the spatial resolution were examined. Two characteristic promising cases regarding the depth of focus were found: a pit-intensity focus with the deepest depth of focus, and a flat-intensity focus with deeper depth of focus than usual ZP. It was found that twice the depth of focus could be expected with little reduction in the spatial resolution for 10 keV X-ray energy. It was also found that the depth of focus and the spatial resolution almost unchanged in the photon energy range from 8 to 12 keV.
|
Academic Significance and Societal Importance of the Research Achievements |
放射光が広く利用されるようになり、ZPや全反射ミラーなどのX線光学素子の進歩も相俟って、サブ100 nmの分解能Rが比較的容易に得られるようになり、局所分析やX線顕微鏡の実用性とニーズが高まってきている。集光光学系の基本原理として、より小さいRを得ようとすると焦点深度Dはより浅くなる。すなわちRを小さくすることとDを大きくすることは同時には達成できない。Rを損なわずにDを大きくできないことは、厚い試料を高い分解能で観察することは原理的に困難であることを意味しており、実材料の分析において試料の厚さを制限することになる。本研究はX線分析の実用性の向上に資するものである。
|
Report
(4 results)
Research Products
(6 results)