Development of analytical system for 2-dimensional chemical state of super light elements by using scanning transmission X-ray microscopy
Project/Area Number |
16K05022
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Research Field |
Quantum beam science
|
Research Institution | Institute for Molecular Science |
Principal Investigator |
Ohigashi Takuji 分子科学研究所, 極端紫外光研究施設, 助教 (50375169)
|
Research Collaborator |
Kosugi Nobuhiro
|
Project Period (FY) |
2016-04-01 – 2019-03-31
|
Project Status |
Completed (Fiscal Year 2018)
|
Budget Amount *help |
¥4,810,000 (Direct Cost: ¥3,700,000、Indirect Cost: ¥1,110,000)
Fiscal Year 2018: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Fiscal Year 2017: ¥2,210,000 (Direct Cost: ¥1,700,000、Indirect Cost: ¥510,000)
Fiscal Year 2016: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
|
Keywords | 走査型透過X線顕微鏡 / 高分解能2次元化学状態分析 / リチウムK吸収端分析 / リチウム検出 / 全反射型Zone Plate / 2次電子検出 / 軽元素分析 / 全反射型ゾーンプレート / 放射光 / 検出手法開発 |
Outline of Final Research Achievements |
Analytical system for chemical states of light elements below carbon, especially lithium, with high spatial resolution was developed by using a synchrotron-based scanning transmission X-ray microscope (STXM). STXM could access around 50 eVby fabricating a special focusing element, a Fresnel zone plate (FZP), which has high diffraction efficiency and longer focal length in low energy region and its supporting membrane of silicon works as a filter to cut off higher order lights above 100 eV. By using this FZP, low X-ray energy region from 50 to 100 eV with spatial resolution around 80 nm could be available to measure microscopic X-ray absorption spectrum around lithium K absorption edge. By using the technique, 2-dimensional chemical state of an electrode of a lithium-ion secondary battery was analyzed.
|
Academic Significance and Societal Importance of the Research Achievements |
エネルギー確保が社会的課題になる中、リチウムイオン2次電池はもはや切り離し難いほど、我々の生活に浸透している。しかし一方で、安全性や電池容量など、解決すべき課題は未だ多く残っている。その原因の一つは、リチウムの化学的・形態的挙動を検出、そしてその分析を行うための適切な手法が、これまで存在しなかったことである。本研究の成果は、その解明をもたらすものである。よって今後のリチウムイオン電池研究において、ブレイクスルーをもたらすものと期待される上に、海洋鉱物類に含有される資源探索や、隕石中にビッグバン由来のリチウムの痕跡を認めるなどと言った、新たなサイエンス分野の開拓も期待できる。
|
Report
(4 results)
Research Products
(29 results)
-
-
-
-
-
-
[Journal Article] Origin of Magnetic properties in carbon Implanted ZnO nanowires2018
Author(s)
Y.F. Wang, Y.C. Shao, S.H. Hsieh, Y.K. Chang, P.H. Yeh, H.C. Hsueh, J.W. Chiou, H.T. Wang, S.C. Ray, H.M. Tsai, C.W. Pao, C.H. Chen, H.J. Lin, J.F. Lee, C.T. Wu, J.J. Wu, Y.M. Chang, K. Asokan, K.H. Chae, T. Ohigashi, Y. Takagi, T. Yokoyama, N. Kosugi and W.F. Pong
-
Journal Title
Scientific Report
Volume: 8
Pages: 7758-7758
Related Report
Peer Reviewed / Open Access / Int'l Joint Research
-
[Journal Article] Highly Efficient 2D/3D Hybrid Perovskite Solar Cells via Low-Pressure Vapor-Assisted Solution Process2018
Author(s)
M-H. Li, H-H Yeh, U-S. Jeng, C-J. Su, H-W. Shiu, Y-J. Hsu, N. Kosugi, T. Ohigashi, Y-A. Chen, P-S. Shen, P. Chen, T-F. Guo
-
Journal Title
Advanced Materials
Volume: 30
Issue: 30
Pages: 1801401-1801401
DOI
Related Report
Peer Reviewed / Int'l Joint Research
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-