Efficient numerical calculation method of high frequency electromagnetic fields in large-scale low-loss cavities and reverberation chambers
Project/Area Number |
16K05040
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Research Field |
Computational science
|
Research Institution | Kansai University (2018) Kyoto University (2016-2017) |
Principal Investigator |
Hamada Shoji 関西大学, システム理工学部, 教授 (20246656)
|
Project Period (FY) |
2016-04-01 – 2019-03-31
|
Project Status |
Completed (Fiscal Year 2018)
|
Budget Amount *help |
¥4,680,000 (Direct Cost: ¥3,600,000、Indirect Cost: ¥1,080,000)
Fiscal Year 2018: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
Fiscal Year 2017: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
Fiscal Year 2016: ¥2,340,000 (Direct Cost: ¥1,800,000、Indirect Cost: ¥540,000)
|
Keywords | 電磁界解析 / 反復解法 / 収束性 / 悪条件問題 / 残差切除法 / モーメント法 / 高周波 / 反射箱 / 電磁界 / 電界積分方程式 / 高速多重極法 / 計算物理 / 大規模解析 / 密閉領域 |
Outline of Final Research Achievements |
We conducted research on the convergence property of the iterative solvers for analyses of electromagnetic fields in lossless cubic cavities by the method of moments. We increased the cavity side length from approximately 1 to 53.6 wavelengths, and the convergence of the iterative solvers in large-scale cavity problems was investigated. We proposed extended versions of the residual cutting method, which improves the convergence of iterative solvers, and we applied them to an iterative solver called BiCGSafe method. These extended versions improved the convergence of ill-conditioned problems up to about 8.5 times, and in some cases, these extended versions achieved convergence even when the BiCGSafe method didn’t converge. We also verified that Calderon preconditioner can be used with these extended versions and that this preconditioner is effective to the cavity problems.
|
Academic Significance and Societal Importance of the Research Achievements |
低損失密閉環境中および反射箱中の高周波電磁界は、生体影響や電子機器影響の観点から重要な場だが、大規模高速高精度計算が困難な計算対象の一つである。本研究により大規模解析の難易度を低下させることができ、生体影響や電子機器影響の検討がより容易になった。一方、残差切除法は任意の反復解法および任意の前処理手法と併用可能な収束性改善法であり、その改良法を提案できたことは、悪条件問題を反復解法で扱っている様々な分野の問題に対し、新たな収束性改善策の候補を提供できたといえる。個別問題に対する有効性は、実際に適用してみないと分からないが、様々な分野への適用と有効性の検証という課題が新たに生まれたともいえる。
|
Report
(4 results)
Research Products
(6 results)