• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Various constructions of real analytic automorphic forms on real hyperbolic spaces and their application to various research fields

Research Project

Project/Area Number 16K05065
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Research Field Algebra
Research InstitutionWaseda University (2018)
Kumamoto University (2016-2017)

Principal Investigator

Narita Hiro-aki  早稲田大学, 理工学術院, 教授 (70433315)

Co-Investigator(Renkei-kenkyūsha) Murase Atsushi  京都産業大学, 理学部, 教授 (40157772)
Project Period (FY) 2016-04-01 – 2019-03-31
Project Status Completed (Fiscal Year 2018)
Budget Amount *help
¥4,420,000 (Direct Cost: ¥3,400,000、Indirect Cost: ¥1,020,000)
Fiscal Year 2018: ¥1,560,000 (Direct Cost: ¥1,200,000、Indirect Cost: ¥360,000)
Fiscal Year 2017: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
Fiscal Year 2016: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
Keywords実解析的保型形式 / 逆定理 / テータリフト / 実双曲空間 / 特殊Bessel模型 / 局所Maass関係式 / 非緩増加な保型形式 / 保型形式のリフティング / 直交群 / Ramanujan予想の反例 / リフティング / 実解析的カスプ形式 / 偶ユニモジュラー格子 / 階数1の直交群 / Maassの逆定理 / 保型表現 / テータリフティング / 特異テータリフティング / 有限群の不変量 / 4次元トポロジー
Outline of Final Research Achievements

One fundamental problem in the theory of automorphic forms is to extend the research of automorphic forms of one complex variable to those of multi-variables. Though there are many directions of such extensions, the fundamental aim of this research project is to construct non-holomorphic real analytyic automorphic forms. In the project I have succeeded in constructing real analytic cusp forms on real hyperbolic spaces (which is a natural higher-dmensional generalization of the complex upper half plane). More precisely I have carried out such constructions for 5-dimensional and 8n+1 dimensional cases for arbitrary positive integer n. In addition, I have also provided a general theory relevant to the constructions in terms of the theory of automorphic representations.

Academic Significance and Societal Importance of the Research Achievements

まず, 実解析的カスプ形式を具体的構成を与えた研究は極めて少ないことは、今回の研究成果の意義を強調するものであろう. また8n+1次元実双曲空間上のカスプ形式については、「テータリフト」という方法で構成したが、非調和的な多項式を含む試験関数により構成を与えた. このような例は多変数の保型形式の枠組みで私は見たことがない. 直交群についてArtherの内視分類理論による保型表現の大きな分類理論が確立されているが, 今回の成果はその分類理論の成果の外にある結果である. また構成したカスプ形式の非消滅も証明したが,既存の方法に比べ初等的な方法で証明したことも本研究成果の意義を示すものである.

Report

(4 results)
  • 2018 Annual Research Report   Final Research Report ( PDF )
  • 2017 Research-status Report
  • 2016 Research-status Report
  • Research Products

    (10 results)

All 2019 2018 2017 2016 Other

All Journal Article (1 results) (of which Int'l Joint Research: 1 results,  Peer Reviewed: 1 results,  Open Access: 1 results,  Acknowledgement Compliant: 1 results) Presentation (6 results) (of which Int'l Joint Research: 3 results,  Invited: 6 results) Remarks (3 results)

  • [Journal Article] Lifting to GL(2) over a division quaternion algebra and an explicit construction of CAP representations2016

    • Author(s)
      Masanori Muto, Hiro-aki Narita, Ameya Pitale
    • Journal Title

      Nagoya Mathematical Journal

      Volume: 222 Issue: 1 Pages: 137-185

    • DOI

      10.1017/nmj.2016.15

    • Related Report
      2016 Research-status Report
    • Peer Reviewed / Open Access / Int'l Joint Research / Acknowledgement Compliant
  • [Presentation] Special Bessel model with the local Maass relation and non-tempered automorphic forms on orthogonal groups2019

    • Author(s)
      成田宏秋
    • Organizer
      Number Theory Seminar (at Duke university)
    • Related Report
      2018 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] An explicit construction of non-tempered cusp forms on O(1,8n+1)2018

    • Author(s)
      成田宏秋
    • Organizer
      早稲田整数論セミナー
    • Related Report
      2018 Annual Research Report
    • Invited
  • [Presentation] Non-tempered cusp forms on orthogonal groups of rank one2018

    • Author(s)
      成田宏秋
    • Organizer
      東工大数論・幾何学セミナー
    • Related Report
      2018 Annual Research Report
    • Invited
  • [Presentation] Explicit constructions of non-tempered cusp forms on orthogonal groups of low split ranks2018

    • Author(s)
      Hiro-aki Narita
    • Organizer
      RIMS workshop, ``Analytic and Arithmetic Theory of Automorphic Forms''
    • Related Report
      2017 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Explicit constructions of non-tempered cusp forms on orthogonal groups of low split ranks2017

    • Author(s)
      Hiro-aki Narita
    • Organizer
      3rd Japanese-German number theory workshop
    • Related Report
      2017 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Adelized Maass converse theorem and lifting to orthogonal groups of rank one2016

    • Author(s)
      成田宏秋
    • Organizer
      概均質セミナー
    • Place of Presentation
      早稲田大学教育学部
    • Year and Date
      2016-12-03
    • Related Report
      2016 Research-status Report
    • Invited
  • [Remarks] 成田宏秋 ホームページ

    • URL

      http://www.f.waseda.jp/hnarita/narita.htm

    • Related Report
      2018 Annual Research Report
  • [Remarks] 成田宏秋のホームページ

    • URL

      http://www.f.waseda.jp/hnarita/narita.htm

    • Related Report
      2017 Research-status Report
  • [Remarks] 熊本大学理学部数学教室 成田宏秋

    • URL

      http://www.sci.kumamoto-u.ac.jp/~narita/narita.htm

    • Related Report
      2016 Research-status Report

URL: 

Published: 2016-04-21   Modified: 2020-03-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi