• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Arithmetic study on automorphic forms of several variables

Research Project

Project/Area Number 16K05085
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Research Field Algebra
Research InstitutionKindai University

Principal Investigator

Nagaoka Shoyu  近畿大学, 理工学部, 非常勤講師 (20164402)

Project Period (FY) 2016-04-01 – 2020-03-31
Project Status Completed (Fiscal Year 2019)
Budget Amount *help
¥4,160,000 (Direct Cost: ¥3,200,000、Indirect Cost: ¥960,000)
Fiscal Year 2019: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2018: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2017: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2016: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
Keywordsmodular形式 / 保型形式 / 代数学 / 整数論
Outline of Final Research Achievements

I studied on the p-adic propperties of automorphic forms of several variables, especially modular forms of several variables. Strictly seaking, I studied the theta operator, which is a kind of differential operator. I considered the modular form whose image vanishes modulo p. The origin of my study is the discovery that so-called the Igusa cusp form satisfies such property, namely, it becomes a modular form of mod 23 kernel. During the period of study, I clarified what kind of modular form has such property, what kind of modular form with degree n and prime number p becomes an element of mod p kernel of the theta operator.

Academic Significance and Societal Importance of the Research Achievements

modular形式の整数論的性質は,350年間未解決であったフェルマー予想の解決にも用いられた。それは楕円曲線の理論を通して,現代社会に不可欠な暗号理論に応用にされている。報告者の研究対象はは,modular形式を多変数の場合に拡張したもので,前世紀に定義されたものであるが,組織的な研究,とくにその整数論的性質を解明する研究は最近端緒をつけられたものである。報告者の研究は,その多変数modular形式のp進理論というものであるが,最近の研究で,理論物理学との関係も報告され,整数論ばかりでなく,広く社会の他分野へ応用することは,興味深いこれからの研究課題である。

Report

(5 results)
  • 2019 Annual Research Report   Final Research Report ( PDF )
  • 2018 Research-status Report
  • 2017 Research-status Report
  • 2016 Research-status Report
  • Research Products

    (11 results)

All 2020 2019 2018 2017 2016

All Journal Article (6 results) (of which Peer Reviewed: 6 results) Presentation (5 results) (of which Int'l Joint Research: 1 results,  Invited: 5 results)

  • [Journal Article] Theta operator on Hermitian modular forms over the Eisenstein series2020

    • Author(s)
      Shoyu Nagaoka and Sho Takemori
    • Journal Title

      Ramanujan Journal

      Volume: - Issue: 1 Pages: 105-121

    • DOI

      10.1007/s11139-018-0111-y

    • Related Report
      2019 Annual Research Report
    • Peer Reviewed
  • [Journal Article] On the mod p kernel of the theta operator and Eisenstein series2018

    • Author(s)
      Shoyu Nagaoka and Sho Takemori
    • Journal Title

      Journal of Number Theory

      Volume: 188 Pages: 281-298

    • DOI

      10.1016/j.jnt.2018.01.011

    • Related Report
      2018 Research-status Report
    • Peer Reviewed
  • [Journal Article] On the kernel of the theta operator mod p2018

    • Author(s)
      Siegfried Boecherer,Hirotaka Kodama, Shoyu Nagaoka
    • Journal Title

      manuscripta mathematica

      Volume: 156 Issue: 1-2 Pages: 149-169

    • DOI

      10.1007/s00229-017-0962-3

    • Related Report
      2018 Research-status Report
    • Peer Reviewed
  • [Journal Article] On the mod p kernel of the theta operator and Eisenstein series,2018

    • Author(s)
      Shoyu Nagaoka and Sho Takemori
    • Journal Title

      Journal of Number Theory

      Volume: 188 Pages: 281-298

    • Related Report
      2017 Research-status Report
    • Peer Reviewed
  • [Journal Article] On the theta operator for Hermitian modular forms of degree 22017

    • Author(s)
      Toshiyuki Kikuta and Shoyu Nagaoka
    • Journal Title

      Abh. Math. Semin. Univ. Hamburg

      Volume: 87 Issue: 1 Pages: 145-163

    • DOI

      10.1007/s12188-016-0141-6

    • Related Report
      2017 Research-status Report 2016 Research-status Report
    • Peer Reviewed
  • [Journal Article] Notes on theta series for Niemeier lattices2017

    • Author(s)
      S. Nagaoka and S. Takemori
    • Journal Title

      Ramanujan J.

      Volume: 42 Issue: 2 Pages: 385-400

    • DOI

      10.1007/s11139-015-9720-x

    • Related Report
      2016 Research-status Report
    • Peer Reviewed
  • [Presentation] Remar on a Shimura's reulst for Eisenstein series2020

    • Author(s)
      Shoyu Nagaoka
    • Organizer
      Aachen工科大学数学講演会
    • Related Report
      2019 Annual Research Report
    • Invited
  • [Presentation] Theta operator on modular forms2019

    • Author(s)
      Shoyu Nagaoka
    • Organizer
      56th ABKLS Conference on Automorphic Forms(Aachen-Bonn-Koeln-Lille-Siegen5大学共同保型形式論研究集会)
    • Related Report
      2018 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] On the kernel of the theta operator on Hermitian modular forms2017

    • Author(s)
      Shoyu Nagaoka
    • Organizer
      Mathematisches Seminar RWTH
    • Related Report
      2017 Research-status Report
    • Invited
  • [Presentation] On p-aidic prperties of Siegel modular forms2017

    • Author(s)
      Shoyu Nagaoka
    • Organizer
      Math. Seminar Univsrsitaet Mannheim
    • Related Report
      2017 Research-status Report
    • Invited
  • [Presentation] Theta opeartor on Hermitian modular forms2016

    • Author(s)
      Shoyu Nagaoka
    • Organizer
      Algebraische Colloqium Aachen Universitaet
    • Place of Presentation
      ドイツ・アーヘン工科大学
    • Year and Date
      2016-06-23
    • Related Report
      2016 Research-status Report
    • Invited

URL: 

Published: 2016-04-21   Modified: 2021-02-19  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi