• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Classification of Q-Fano 3-folds

Research Project

Project/Area Number 16K05090
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Research Field Algebra
Research InstitutionGakushuin University (2018-2023)
The University of Tokyo (2016-2017)

Principal Investigator

Takagi Hiromichi  学習院大学, 理学部, 教授 (30322150)

Project Period (FY) 2016-04-01 – 2024-03-31
Project Status Completed (Fiscal Year 2023)
Budget Amount *help
¥4,550,000 (Direct Cost: ¥3,500,000、Indirect Cost: ¥1,050,000)
Fiscal Year 2020: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2019: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2018: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2017: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2016: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
KeywordsFano 3-fold / Jordan algebra / triple system / Q-Fano 3-fold / Key variety / Sarkisov link / Projection / Q-Fano 多様体 / P^2×P^2 ファイブレーション / 森理論 / 射影幾何 / 素Q-Fano 3-fold / P2×P2ファイバー構造 / 代数多様体の定義方程式 / 種数 / General elephant / 慨del Pezzo 3-fold / モジュライの有理性 / theta characteristic / 2-ray game
Outline of Final Research Achievements

A 3-dimensional projective variety with at most terminal singularities and with ample anti-canonical divisor is called a Fano 3-fold, and one such that the anti-canonical divisor generates the group of numerical equivalence classes of Q-Cartier divisors is called a prime Fano 3-fold. During my research period, I have been actively researching the classification of Fano 3-folds with codimension 4 in weighted projective spaces. It is expected that such Fano 3-folds are divided into 143 classes, and each class have two types of prime Fano 3-folds: one related to P2×P2 and one related to P1×P1×P1. The result obtained within the research period was to construct examples of such prime Fano 3-folds related to P2×P2 for 141 classes systematically.

Academic Significance and Societal Importance of the Research Achievements

Fano 3-foldの分類は、Gino Fanoが非特異な素Fano 3-foldの分類に成功して以来、実りある研究の歴史を持つ。特に、森理論の登場により、Fano 3-foldは、3次元射影多様体のモデルの一つの重要なクラスをなすことが明らかになり、新たな意義を獲得して現在に至る。Fano 3-foldは、有限のクラスに分かれるものの、その数は膨大であることが知られており、その分類の全体像はいまだ明らかになっていない。その中で、当該研究の成果は、余次元4の素Fano 3-foldの例の組織的な構成であり、分類の全体像の一端に迫るものとして、意義あるものと言える。

Report

(8 results)
  • 2023 Final Research Report ( PDF )
  • 2022 Research-status Report
  • 2021 Research-status Report
  • 2020 Research-status Report
  • 2019 Research-status Report
  • 2018 Research-status Report
  • 2017 Research-status Report
  • 2016 Research-status Report
  • Research Products

    (17 results)

All 2022 2021 2020 2019 2018 2017 2016

All Journal Article (9 results) (of which Int'l Joint Research: 3 results,  Peer Reviewed: 9 results,  Open Access: 3 results,  Acknowledgement Compliant: 1 results) Presentation (8 results) (of which Int'l Joint Research: 3 results,  Invited: 8 results)

  • [Journal Article] Mirror symmetry of Calabi-Yau manifolds fibered by (1,8) -polarized abelian surfaces2022

    • Author(s)
      Shinobu Hosono and Hiromichi Takagi
    • Journal Title

      Communications in Number Theory and Physics

      Volume: 16 Issue: 2 Pages: 215-298

    • DOI

      10.4310/cntp.2022.v16.n2.a1

    • Related Report
      2022 Research-status Report 2021 Research-status Report
    • Peer Reviewed / Open Access
  • [Journal Article] K3 surfaces from configurations of six lines in P2 and mirror symmetry I2020

    • Author(s)
      Shinobu Hosono and Hiromichi Takagi
    • Journal Title

      Communications in Number Theory and Physics

      Volume: 14 Issue: 4 Pages: 739-783

    • DOI

      10.4310/cntp.2020.v14.n4.a2

    • Related Report
      2020 Research-status Report
    • Peer Reviewed / Open Access / Int'l Joint Research
  • [Journal Article] Derived categories of Artin-;Mumford double solids2020

    • Author(s)
      Shinobu Hosono and Hiromichi Takagi
    • Journal Title

      Kyoto Journal of Mathematics

      Volume: 60 Pages: 107-177

    • Related Report
      2019 Research-status Report
    • Peer Reviewed
  • [Journal Article] Mirror Symmetry and Projective Geometry of Fourier-Mukai Partners2020

    • Author(s)
      Shinobu Hosono and Hiromichi Takagi
    • Journal Title

      Advanced Lectures in Mathematics

      Volume: 47

    • Related Report
      2019 Research-status Report
    • Peer Reviewed
  • [Journal Article] K3 surfaces from configurations of six lines in P^2 and mirror symmetry I2020

    • Author(s)
      Shinobu Hosono, Bong H. Lian, Hiromichi Takagi, Shing-Tung Yau
    • Journal Title

      Communications in Number Theory and Physics

      Volume: 14

    • Related Report
      2019 Research-status Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] The rationality of the moduli space of one-pointed ineffective spin hyperelliptic curves via an almost del Pezzo threefold2018

    • Author(s)
      Takagi, Hiromichi; Zucconi, Francesco
    • Journal Title

      Nagoya Math. J.

      Volume: 232 Pages: 121-150

    • DOI

      10.1017/nmj.2017.23

    • Related Report
      2018 Research-status Report 2017 Research-status Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] Movable vs monodromy nilpotent cones of Calabi-Yau manifolds2018

    • Author(s)
      Hosono, Shinobu; Takagi, Hiromichi
    • Journal Title

      SIGMA Symmetry Integrability Geom. Methods Appl.

      Volume: 14 Pages: 039-37

    • DOI

      10.3842/sigma.2018.039

    • Related Report
      2018 Research-status Report
    • Peer Reviewed / Open Access
  • [Journal Article] Towards homological projective duality for S2P3 and S2P42017

    • Author(s)
      Shinobu Hosono and Hiromichi Takagi
    • Journal Title

      Advances in Mathematics

      Volume: 317 Pages: 371-409

    • DOI

      10.1016/j.aim.2017.06.039

    • Related Report
      2017 Research-status Report
    • Peer Reviewed
  • [Journal Article] Double Quintic Symmetroids, Reye Congruences, and Their Derived Equivalence2016

    • Author(s)
      S. Hosono, H. Takagi
    • Journal Title

      Journal of Differentail Geometry

      Volume: 104, (32016) Issue: 3 Pages: 443-497

    • DOI

      10.4310/jdg/1478138549

    • Related Report
      2016 Research-status Report
    • Peer Reviewed / Acknowledgement Compliant
  • [Presentation] On key varieties for prime Q-Fano threefolds of codimension 42021

    • Author(s)
      Hiromichi Takagi
    • Organizer
      Higher-dimensional algebraic varieties
    • Related Report
      2021 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Key varieties for prime Q-Fano threefolds of codimension 42021

    • Author(s)
      Hiromichi Takagi
    • Organizer
      Zoom Algebraic Geometry Seminar
    • Related Report
      2020 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Examples of key varieties of prime Q-Fano threefolds of codimension 42019

    • Author(s)
      高木寛通
    • Organizer
      Workshop on Calabi-Yau Varieties and Related Topics
    • Related Report
      2019 Research-status Report
    • Invited
  • [Presentation] On key varieties of prime Q-Fano 3-folds2019

    • Author(s)
      高木寛通
    • Organizer
      ファノ多様体及び関連する代数幾何学
    • Related Report
      2019 Research-status Report
    • Invited
  • [Presentation] 3次元Q-Fano多様体の分類について2018

    • Author(s)
      高木寛通
    • Organizer
      京都大学談話会
    • Related Report
      2017 Research-status Report
    • Invited
  • [Presentation] On classification of prime Q-Fano 3-folds with only 1/2(1,1,1)-singularities and of genus less than 22018

    • Author(s)
      高木寛通
    • Organizer
      東大代数幾何セミナー
    • Related Report
      2017 Research-status Report
    • Invited
  • [Presentation] On key varieties of Q-Fano threefolds with only 1/2 (1,1,1)-singularities2017

    • Author(s)
      高木寛通
    • Organizer
      代数的層のモジュライの研究とその周辺
    • Place of Presentation
      京都大学数理解析研究所
    • Year and Date
      2017-02-01
    • Related Report
      2016 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Q-Fano 3-fold with 1/2 (1,1,1)-singularities revisited2016

    • Author(s)
      高木寛通
    • Organizer
      都の西北代数幾何学シンポジウム
    • Place of Presentation
      早稲田大学
    • Year and Date
      2016-11-15
    • Related Report
      2016 Research-status Report
    • Invited

URL: 

Published: 2016-04-21   Modified: 2025-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi