• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Global F-regularity, Fano variety and the finiteness of Frobenius direct images

Research Project

Project/Area Number 16K05092
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Research Field Algebra
Research InstitutionTokyo University of Agriculture and Technology

Principal Investigator

Hara Nobuo  東京農工大学, 工学(系)研究科(研究院), 教授 (90298167)

Project Period (FY) 2016-04-01 – 2022-03-31
Project Status Completed (Fiscal Year 2021)
Budget Amount *help
¥3,120,000 (Direct Cost: ¥2,400,000、Indirect Cost: ¥720,000)
Fiscal Year 2019: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Fiscal Year 2018: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Fiscal Year 2017: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Fiscal Year 2016: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Keywords正標数 / フロベニウス直像 / 有限F表現型(FFRT) / 2次元正規次数環 / ファノ多様体 / 大域的F正則 / デルペッツォ曲面 / 代数幾何 / 有限F-表現型(FFRT) / del Pezzo 曲面 / フロベニウス写像 / 反標準環 / del Pezzo曲面 / 有限F表現型(FFRT) / Frobenius直像 / 5次del Pezzo曲面 / ベクトル束 / F-符号数 / 有限F表現型 / 2次元特異点 / 代数的スタック / 特異点
Outline of Final Research Achievements

We studied the structure of iterated Frobenius direct images on algebraic varieties and their singularities in positive characteristic, from the viewpoint of the finite F-representation type (FFRT). Our results are as follows.
1. (joint work with Ryo Ohkawa) We studied the FFRT property of 2-dimensional normal graded rings (quasi-homogeneous singularities) in positive characteristic p using the method of algebraic stacks. We proved that a 2-dimensional normal graded ring has FFRT if it has a log terminal singularity; but it does not have FFRT otherwise, except for some exceptional cases depending on p.
2. We studied the FFRT property of the anti-canonical ring of a quintic del Pezzo surface X in positive characteristic. We constructed a self-dual indecomposable vector bundle of rank 3 that appears as a direct summand of self-dual Frobenius direct images on X. We have also shown that the anti-canonical ring has FFRT in characteristics 2 and 3.

Academic Significance and Societal Importance of the Research Achievements

本研究は,正標数p,すなわち素数pについて,任意の数をp回足すと0になってしまう世界で,多項式系の零点集合として定義される図形(代数多様体)の大域的および局所的な性質を研究するものです.正標数の数学は暗号符号などへの応用もありますが,本研究はこれらの応用と直接的には関係せず,正標数特有の時として奇妙にも映る現象の中に,純粋数学的な意義と美しさを見出して,これを探求するものです.

Report

(7 results)
  • 2021 Annual Research Report   Final Research Report ( PDF )
  • 2020 Research-status Report
  • 2019 Research-status Report
  • 2018 Research-status Report
  • 2017 Research-status Report
  • 2016 Research-status Report
  • Research Products

    (8 results)

All 2020 2019 2018 2017 2016

All Journal Article (1 results) (of which Peer Reviewed: 1 results) Presentation (7 results) (of which Int'l Joint Research: 1 results,  Invited: 6 results)

  • [Journal Article] The FFRT property of two-dimensional normal graded rings and orbifold curves2020

    • Author(s)
      Hara Nobuo、Ohkawa Ryo
    • Journal Title

      Advances in Mathematics

      Volume: 370 Pages: 107215-107215

    • DOI

      10.1016/j.aim.2020.107215

    • Related Report
      2020 Research-status Report
    • Peer Reviewed
  • [Presentation] Self-dual Frobenius summands on a quintic del Pezzo surface2019

    • Author(s)
      Nobuo Hara
    • Organizer
      OIST/RIMS Workshop: On the problem of Resolution of Singularities and Its Vicinity
    • Related Report
      2019 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Frobenius summands on a quintic del Pezzo surface in positive characteristic2019

    • Author(s)
      原 伸生
    • Organizer
      研究集会「射影多様体の幾何とその周辺2019」
    • Related Report
      2019 Research-status Report
    • Invited
  • [Presentation] Frobenius summands on a quintic del Pezzo surface in positive characteristic2019

    • Author(s)
      原 伸生
    • Organizer
      東京可換環論セミナー
    • Related Report
      2019 Research-status Report
    • Invited
  • [Presentation] On Frobenius summands of graded rings2018

    • Author(s)
      原伸生
    • Organizer
      代数学シンポジウム
    • Related Report
      2018 Research-status Report
    • Invited
  • [Presentation] The finite F-representation type of surface singularities via orbifold curves2018

    • Author(s)
      原 伸生
    • Organizer
      第5回 代数幾何研究集会ー宇部ー
    • Related Report
      2017 Research-status Report
    • Invited
  • [Presentation] Frobenius push-forwards on weighted projective lines and the FFRT property of surface singularities2017

    • Author(s)
      原 伸生
    • Organizer
      代数幾何ミニ研究集会
    • Place of Presentation
      埼玉大学理学部
    • Year and Date
      2017-03-06
    • Related Report
      2016 Research-status Report
    • Invited
  • [Presentation] Frobenius push-forwards on weighted projective lines and the FFRT property of surface singularities2016

    • Author(s)
      Nobuo Hara
    • Organizer
      正標数セミナー
    • Place of Presentation
      東京大学数理科学研究科
    • Year and Date
      2016-11-29
    • Related Report
      2016 Research-status Report

URL: 

Published: 2016-04-21   Modified: 2023-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi