• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Development of Quasi-Galois Point Theory - To understand delicate properties of hypersurfaces

Research Project

Project/Area Number 16K05094
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Research Field Algebra
Research InstitutionNiigata University

Principal Investigator

Takahashi Takeshi  新潟大学, 自然科学系, 准教授 (60390431)

Project Period (FY) 2016-10-21 – 2020-03-31
Project Status Completed (Fiscal Year 2019)
Budget Amount *help
¥4,680,000 (Direct Cost: ¥3,600,000、Indirect Cost: ¥1,080,000)
Fiscal Year 2018: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
Fiscal Year 2017: ¥1,690,000 (Direct Cost: ¥1,300,000、Indirect Cost: ¥390,000)
Fiscal Year 2016: ¥1,560,000 (Direct Cost: ¥1,200,000、Indirect Cost: ¥360,000)
Keywords準ガロア点 / ガロア点 / 弱ガロア・ワイエルシュトラス点 / 射影的超曲面 / 代数関数体 / 自己同型群 / ガロア理論 / 代数曲線 / ガロア・ワイエルシュトラス点 / 代数関数体の内部構造 / ガロア被覆 / ワイエルシュトラス点 / 2元生成ワイエルシュトラス半群 / 準ガロワ点 / 弱ガロワ・ワイエルシュトラス点 / 代数多様体の自己同型
Outline of Final Research Achievements

Galois points for projective hypersurfaces were studied as a object for considering the internal structure of algebraic function fields. We want a new theory that is an extension of the Galois point theory, and study "quasi-Galois points of hypersurfaces" and "weak Galois-Weierstrass points of algebraic curves" as objects of consideration.
By a joint research with Kei Miura and Satoru Fukasawa, we study the numbers and distributions of quasi-Galois points on nonsingular plane algebraic curves. In particular, we simplified the proofs obtained before and made the results better.
By a joint research with Jiryo Komeda, we determined the numbers and distributions of weak Galois-Weierstrass points of complete algebraic curves under the condition that the semigroup of the target points is generated by two integers.

Academic Significance and Societal Importance of the Research Achievements

平面曲線に対する準ガロア点について、論文を発表することができた。準ガロア点に関する結果は、ガロア点についての同様の結果よりも多様なものであった。射影的超曲面の性質を調べる上で、準ガロア点という新しい調査対象が有益であると期待されるが、今回の論文でその基本的な調査手法を提供することになった。
また、完備代数曲線に対して、ワイエルシュトラス半群が2元生成となるような弱ガロア・ワイエルシュトラス点の個数を決定することができた。完備代数曲線の自己同型を調べる上で弱ガロア・ワイエルシュトラス点は有効なものとなるが、その取り扱いの基本的な手法を提供できた。

Report

(5 results)
  • 2019 Annual Research Report   Final Research Report ( PDF )
  • 2018 Research-status Report
  • 2017 Research-status Report
  • 2016 Research-status Report
  • Research Products

    (12 results)

All 2019 2018 2017

All Journal Article (5 results) (of which Peer Reviewed: 4 results,  Acknowledgement Compliant: 1 results) Presentation (7 results) (of which Int'l Joint Research: 3 results,  Invited: 4 results)

  • [Journal Article] QUASI-GALOIS POINTS, I: AUTOMORPHISM GROUPS OF PLANE CURVES2019

    • Author(s)
      Fukasawa Satoru、Miura Kei、Takahashi Takeshi
    • Journal Title

      Tohoku Mathematical Journal, Second Series

      Volume: 71 Issue: 4 Pages: 487-494

    • DOI

      10.2748/tmj/1576724789

    • ISSN
      0040-8735, 2186-585X
    • Year and Date
      2019-12-30
    • Related Report
      2019 Annual Research Report
    • Peer Reviewed
  • [Journal Article] ワイエルシュトラス半群が<a,b>となる弱ガロア・ワイエルシュトラス点2019

    • Author(s)
      高橋剛
    • Journal Title

      射影多様体の幾何とその周辺2018 報告集

      Volume: - Pages: 13-25

    • Related Report
      2018 Research-status Report
  • [Journal Article] Log del Pezzo surfaces of rank one containing the affine plane2019

    • Author(s)
      Hideo Kojima and Takeshi Takahashi
    • Journal Title

      Nihonkai Mathematical Journal

      Volume: 29 Pages: 77-130

    • Related Report
      2018 Research-status Report
    • Peer Reviewed
  • [Journal Article] Quasi-Galois points, I: Automorphism groups of plane curves2018

    • Author(s)
      Satoru Fukasawa, Kei Miura and Takeshi Takahashi
    • Journal Title

      Tohoku Mathematical Journal

      Volume: 印刷中

    • Related Report
      2017 Research-status Report
    • Peer Reviewed
  • [Journal Article] Relating Galois points to weak Galois Weierstrass points through double coverings of curves2017

    • Author(s)
      Jiryo Komeda and Takeshi Takahashi
    • Journal Title

      J. Korean Math. Soc.

      Volume: 54 Issue: 1 Pages: 69-86

    • DOI

      10.4134/jkms.j150593

    • Related Report
      2017 Research-status Report
    • Peer Reviewed / Acknowledgement Compliant
  • [Presentation] Weak Galois-Weierstrass points with semigroups generated by two integers2018

    • Author(s)
      高橋剛
    • Organizer
      射影多様体の幾何とその周辺2018 於高知工科大学永国寺キャンパス
    • Related Report
      2018 Research-status Report
    • Invited
  • [Presentation] 種数4曲線のガロアラインについて2018

    • Author(s)
      高橋剛
    • Organizer
      Workshop on Galois point and related topics 於新潟大学駅南キャンパスときめいと
    • Related Report
      2018 Research-status Report
  • [Presentation] Number of weak Galois Weierstrass points with semigroup <a, b>2018

    • Author(s)
      Takeshi Takahashi
    • Organizer
      The 16th Affine Algebraic Geometry Meeting
    • Related Report
      2017 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Weak Galois Weierstrass points whose semigroups are generated by two integers2017

    • Author(s)
      Takeshi Takahashi
    • Organizer
      Geometric Galois Theory and Monodromy
    • Related Report
      2017 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] ワイエルシュトラス半群が2元生成となる弱ガロアワイエルシュトラス点の個数について2017

    • Author(s)
      高橋剛
    • Organizer
      10th Workshop on Galois point and related topics
    • Related Report
      2017 Research-status Report
  • [Presentation] 平面代数曲線のガロア点と準ガロア点2017

    • Author(s)
      高橋剛
    • Organizer
      新潟代数セミナー
    • Related Report
      2017 Research-status Report
  • [Presentation] On the number of Galois Weierstrass points whose semigroups are generated by two elements2017

    • Author(s)
      Takeshi TAKAHASHI
    • Organizer
      The 15th Affine Algebraic Geometry Meeting
    • Place of Presentation
      関西学院大学大阪梅田キャンパス, 大阪府大阪市北区
    • Related Report
      2016 Research-status Report
    • Int'l Joint Research / Invited

URL: 

Published: 2016-10-24   Modified: 2021-02-19  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi