• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Brill-Noeter theory for semi stable bundles on curves which are contained in a K3 surface and around the fields

Research Project

Project/Area Number 16K05101
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Research Field Algebra
Research InstitutionNihon University

Principal Investigator

WATANABE Kenta  日本大学, 理工学部, 助教 (70582683)

Research Collaborator KOMEDA Jiryo  
Project Period (FY) 2016-04-01 – 2019-03-31
Project Status Completed (Fiscal Year 2018)
Budget Amount *help
¥2,210,000 (Direct Cost: ¥1,700,000、Indirect Cost: ¥510,000)
Fiscal Year 2018: ¥650,000 (Direct Cost: ¥500,000、Indirect Cost: ¥150,000)
Fiscal Year 2017: ¥650,000 (Direct Cost: ¥500,000、Indirect Cost: ¥150,000)
Fiscal Year 2016: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Keywords安定 ACM 束 / Lazarsfeld-Mukai 束 / Mercat 予想 / Weierstrass 半群 / K3 曲面 / 曲線 / Brill-Noether 理論 / ACM 束 / 安定ベクトル束 / 非特異曲線 / クリフォード指数
Outline of Final Research Achievements

In our research, the author obtained several results on the stability and the splitting of Lazarsfeld-Mukai bundles of rank two associated with smooth curves on K3 surfaces and base point free pencils on them in the point of view of the classification of indecomposable ACM bundles on polarized K3 surfaces. On the other hand, the author have studied linear systems on curves on a K3 surface which is given by a double covering of a Hirzebruch surface to construct a certain semistable bundles of rank two on curves which contribute to the second Clifford indices of them.

Academic Significance and Societal Importance of the Research Achievements

代数曲面上の与えられた偏極に関するベクトル束の安定性や分解問題に付随した偏極代数曲面の表現型の決定に関する研究は環論・代数幾何学における興味深い話題である。ところが、K3 曲面をはじめとする多くの対象に対しそれらの問題は難しく、解決されていない部分が多い。しかしながら、偏極 K3 曲面上の階数 2 ACM 束は大域切断で生成されていれば Lazarsfeld-Mukai 束である為、本研究では問題をそのようなベクトル束に帰着させることで新しい着眼点を得ることができた。

Report

(4 results)
  • 2018 Annual Research Report   Final Research Report ( PDF )
  • 2017 Research-status Report
  • 2016 Research-status Report
  • Research Products

    (12 results)

All 2019 2018 2017 2016 Other

All Journal Article (4 results) (of which Peer Reviewed: 4 results,  Open Access: 1 results) Presentation (6 results) (of which Invited: 4 results) Remarks (2 results)

  • [Journal Article] ACM line bundles on polarized K3 surfaces2019

    • Author(s)
      Watanabe Kenta
    • Journal Title

      Geometriae Dedicata

      Volume: - Issue: 1 Pages: 321-335

    • DOI

      10.1007/s10711-019-00436-2

    • Related Report
      2018 Annual Research Report
    • Peer Reviewed
  • [Journal Article] On the splitting of Lazarsfeld-Mukai bundles on K3 surfaces II2019

    • Author(s)
      Watanabe Kenta
    • Journal Title

      Journal of Algebra

      Volume: 518 Pages: 129-145

    • DOI

      10.1016/j.jalgebra.2018.09.042

    • Related Report
      2018 Annual Research Report
    • Peer Reviewed
  • [Journal Article] A double covering of curves on a Hirzebruch surface of degree one and Weierstrass semigroups2018

    • Author(s)
      Watanabe Kenta
    • Journal Title

      Semigroup Forum

      Volume: 98 Issue: 2 Pages: 422-429

    • DOI

      10.1007/s00233-018-9970-1

    • Related Report
      2018 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Unstable Lazarsfeld-Mukai bundles of rank 2 on a certain K3 surface of Picard number 22018

    • Author(s)
      Kenta Watanabe
    • Journal Title

      Advances in Algebra

      Volume: 11 Pages: 7-17

    • Related Report
      2017 Research-status Report
    • Peer Reviewed / Open Access
  • [Presentation] 偏極 K3 曲面上の階数 2 ACM 束の分類と Lazarsfeld-Mukai 束について2019

    • Author(s)
      渡邉健太
    • Organizer
      農工大数学セミナー
    • Related Report
      2018 Annual Research Report
    • Invited
  • [Presentation] On the classification of rank two ACM bundles on quartic hypersurfaces in P32018

    • Author(s)
      渡邉健太
    • Organizer
      Splitting, construction and stability of vector bundles and their applications
    • Related Report
      2018 Annual Research Report
    • Invited
  • [Presentation] 偏極 K3 曲面上の ACM 直線束について2018

    • Author(s)
      渡邉健太
    • Organizer
      日本数学会 2018 年度会
    • Related Report
      2017 Research-status Report
  • [Presentation] K3 曲面上のある種の分解しない Lazarsfeld-Mukai 束の例2017

    • Author(s)
      渡邉健太
    • Organizer
      日本数学会 2017 年度会
    • Place of Presentation
      首都大学東京南大沢キャンパス(東京都, 八王子市南大沢)
    • Year and Date
      2017-03-24
    • Related Report
      2016 Research-status Report
  • [Presentation] 次数 1 の Hirzebruch 曲面上の曲線の二重被覆と Weierstrass 半群について2017

    • Author(s)
      渡邉健太
    • Organizer
      第 15 回代数曲線論シンポジウム
    • Related Report
      2017 Research-status Report
    • Invited
  • [Presentation] ピカール数 1 の K3 曲面上の曲線に対する階数 2 の Mercat 予想について2016

    • Author(s)
      渡邉健太
    • Organizer
      第4回 K3曲面・エンリケス曲面ワークショップ
    • Place of Presentation
      北海道教育大学札幌駅前サテライト(北海道, 札幌市)
    • Year and Date
      2016-10-10
    • Related Report
      2016 Research-status Report
    • Invited
  • [Remarks] 渡邉健太のページ

    • URL

      http://www.geocities.jp/kenta314_math/

    • Related Report
      2017 Research-status Report
  • [Remarks] 渡邉健太(Watanabe Kenta)のページ

    • URL

      http://www.geocities.jp/kenta314_math/

    • Related Report
      2016 Research-status Report

URL: 

Published: 2016-04-21   Modified: 2020-03-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi