• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Study of stability of periodic minimal surfaces and their limits

Research Project

Project/Area Number 16K05134
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Research Field Geometry
Research InstitutionSaga University

Principal Investigator

Shoda Toshihiro  佐賀大学, 教育学部, 准教授 (10432957)

Project Period (FY) 2016-04-01 – 2020-03-31
Project Status Completed (Fiscal Year 2019)
Budget Amount *help
¥4,680,000 (Direct Cost: ¥3,600,000、Indirect Cost: ¥1,080,000)
Fiscal Year 2019: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
Fiscal Year 2018: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
Fiscal Year 2017: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
Fiscal Year 2016: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
Keywords三重周期的な極小曲面 / 体積保存安定性 / 三重周期極小曲面の極限 / ラメラ構造 / 極小曲面の変形族の構成 / 三重周期的極小曲面 / Morse指数 / signature / nullity / 安定性 / 変形族の構成 / 幾何学
Outline of Final Research Achievements

Periodic minimal surfaces in the Euclidean three-space can be considered as a mathematical model for surfactant in the soft matter. In 1990s, physicists considered many families of triply periodic minimal surfaces. On the other hand, a stability of a minimal surface has been studied via area minimizing situation. In particular, Barbosa-doCarmo's technique related to volume preserving stability might be useful tool for this situation. By this study, we find out volume preserving stability for some families which physicists considered. Moreover, we gave mathematical description of lamellar phases in the soft matter as limits of triply periodic minimal surfaces.

Academic Significance and Societal Importance of the Research Achievements

界面活性剤の膜の変化の仕方・規則性を数学的に記述することにより,自然現象を解明するというのが本研究課題の意図である.膜は一時的な変化の後に安定した状態になる.この安定した状態が体積保存安定性によって記述できると考え,物理学者たちが考察してきた変形族の体積保存安定性を特定したというのが本研究である.また,界面活性剤の膜の温度を変化させた際に起こる膜の変異が三重周期的な極小曲面の極限として記述されると考え,特殊な場合の極限を特定することによりその変異に類似した対象を得た.これにより,膜の変異の理論的必然性の示唆が得られたと考える.

Report

(5 results)
  • 2019 Annual Research Report   Final Research Report ( PDF )
  • 2018 Research-status Report
  • 2017 Research-status Report
  • 2016 Research-status Report
  • Research Products

    (16 results)

All 2019 2018 2017 2016 Other

All Journal Article (6 results) (of which Int'l Joint Research: 1 results,  Peer Reviewed: 6 results,  Open Access: 1 results) Presentation (9 results) (of which Int'l Joint Research: 1 results,  Invited: 8 results) Remarks (1 results)

  • [Journal Article] Stability of triply periodic minimal surfaces2019

    • Author(s)
      Ejiri Norio、Shoda Toshihiro
    • Journal Title

      Differential Geometry and its Applications

      Volume: 67 Pages: 101555-101555

    • DOI

      10.1016/j.difgeo.2019.101555

    • Related Report
      2019 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Metrics on a closed surface of genus two which maximize the first eigenvalue of the Laplacian2019

    • Author(s)
      Nayatani Shin、Shoda Toshihiro
    • Journal Title

      Comptes Rendus Mathematique

      Volume: 357 Issue: 1 Pages: 84-98

    • DOI

      10.1016/j.crma.2018.11.008

    • Related Report
      2018 Research-status Report
    • Peer Reviewed
  • [Journal Article] On limits of triply periodic minimal surfaces2018

    • Author(s)
      Ejiri Norio、Fujimori Shoichi、Shoda Toshihiro
    • Journal Title

      Annali di Matematica Pura ed Applicata (1923 -)

      Volume: 197 Issue: 6 Pages: 1739-1748

    • DOI

      10.1007/s10231-018-0746-8

    • Related Report
      2018 Research-status Report
    • Peer Reviewed
  • [Journal Article] A construction of a two-parameter family of triply periodic minimal surfaces2018

    • Author(s)
      Norio Ejiri, Shoichi Fujimori, Toshihiro Shoda
    • Journal Title

      Kobe Journal of Mathematics

      Volume: 35

    • Related Report
      2018 Research-status Report
    • Peer Reviewed
  • [Journal Article] On birfurcation and local rigidity of triply periodic minimal surface in R32018

    • Author(s)
      Miyuki KOISO, Paolo PICCIONE & Toshihiro SHODA
    • Journal Title

      Ann. Inst. Fourier, Grenoble

      Volume: 68 Pages: 2743-2778

    • Related Report
      2018 Research-status Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] The Morse index of a triply periodic minimal surface2018

    • Author(s)
      Ejiri Norio、Shoda Toshihiro
    • Journal Title

      Differential Geometry and its Applications

      Volume: 58 Pages: 177-201

    • DOI

      10.1016/j.difgeo.2018.01.006

    • Related Report
      2017 Research-status Report
    • Peer Reviewed / Open Access
  • [Presentation] On sharpness of the Yang-Yau inequality for the genus two case2019

    • Author(s)
      庄田敏宏
    • Organizer
      RIMS workshop 「Geometric Aspects of Solutions to Partial Differential Equations」
    • Related Report
      2019 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] Laplacianの第一固有値の上限を与える閉曲面上の計量について2018

    • Author(s)
      庄田敏宏
    • Organizer
      京都大学数理研研究集会「部分多様体の幾何学の深化と展開」
    • Related Report
      2018 Research-status Report
    • Invited
  • [Presentation] 種数 2 の閉曲面上における Laplacian の第一固有値に対する Yang-Yau の不等式について2018

    • Author(s)
      庄田敏宏
    • Organizer
      名城大学研究集会
    • Related Report
      2017 Research-status Report
    • Invited
  • [Presentation] ラプラシアンの第 1 固有値を最大化する種数 2 閉曲面上の計量2018

    • Author(s)
      庄田敏宏
    • Organizer
      日本数学会 2018年度年会
    • Related Report
      2017 Research-status Report
  • [Presentation] Abel-Jacobi写像による極小曲面の変形族の構成について2017

    • Author(s)
      庄田敏宏
    • Organizer
      名城大学研究集会「多様体上の計量と幾何構造」
    • Place of Presentation
      名城大学
    • Year and Date
      2017-03-01
    • Related Report
      2016 Research-status Report
    • Invited
  • [Presentation] Abel-Jacobi写像による三重周期極小曲面の2助変数変形族の構成について2017

    • Author(s)
      庄田敏宏
    • Organizer
      淡路島幾何学研究集会2017
    • Place of Presentation
      淡路島・国民宿舎 慶野松原荘
    • Year and Date
      2017-01-29
    • Related Report
      2016 Research-status Report
    • Invited
  • [Presentation] 閉曲面上のラプラシアンの第一固有値に関するある種の不等式について2017

    • Author(s)
      庄田敏宏
    • Organizer
      第64回幾何学シンポジウム
    • Related Report
      2017 Research-status Report
    • Invited
  • [Presentation] 閉曲面上におけるラプラシアンの第一固有値の上限について2017

    • Author(s)
      庄田敏宏
    • Organizer
      部分多様体論・湯沢2017
    • Related Report
      2017 Research-status Report
    • Invited
  • [Presentation] Jacobi多様体による三重周期極小曲面の変形族の構成について2016

    • Author(s)
      庄田敏宏
    • Organizer
      水戸幾何小研究集会
    • Place of Presentation
      茨城大学
    • Year and Date
      2016-10-22
    • Related Report
      2016 Research-status Report
    • Invited
  • [Remarks] 業績リスト

    • URL

      http://extwww.cc.saga-u.ac.jp/~tshoda/shoda-home-j.html

    • Related Report
      2019 Annual Research Report 2017 Research-status Report

URL: 

Published: 2016-04-21   Modified: 2021-02-19  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi